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Abstract

This online appendix contains supplementary material omitted from the main body of the

paper.
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1 Zero Aggregate Demand in Equilibrium

In this section, we formally derive equilibria in the special examples in which aggregate demand

ends up being zero on the equilibrium path (footnote 12 in Section 2.2 and footnote 20 in Section 5

in the main body of the paper). In Section 1.1 we work out the example with one informed trader,

corresponding to footnote 12, and in Section 1.2 we work out the example with multiple informed

traders, corresponding to footnote 20.

1.1 One Informed Trader

Example OA.1 The value of the security, v, is distributed normally with mean zero and variance

one. There is one strategic trader with signal θ1 who observes the value perfectly: θ1 = v. The

demand of liquidity traders is u = −v. The market maker does not observe any signals beyond the

aggregate demand.

This example satisfies Assumptions 1 and 2 in Section 3, and thus we can use the closed form

solutions derived in the proof of Theorem 1 and presented in Section 4.2 of the paper (for the special

case kM = 0). Because we have only one strategic trader in the example, many of the matrices

become scalars, simplifying the calculation.

Specifically, Σθθ = Σdiag = 1, and therefore Λ = 2 and Λ−1 = 1/2. Next, Σθv = 1, while

Σθu = −1. Thus, Av = 1/2 and Au = −1/2. The coefficients of the quadratic equation in γ are:

a = −1/4, b = (1/2) · 4 · (−1/2) + 1 = 0, c = V ar(−θ/2− u) = V ar(v/2) = 1/4. Therefore, γ = 1,

βD = 1/γ = 1, and α = γAv − Au = 1. Thus, on the equilibrium path, aggregate demand is equal

to D = αθ + u = v − v = 0.

1.2 Multiple Informed Traders

Example OA.2 The value of the security, v, is distributed normally with mean zero and variance

one. There are m strategic traders with the same signal θ1 = v. The demand of liquidity traders is

u = −v. The market maker does not observe any signals beyond the aggregate demand.

This example also satisfies Assumptions 1 and 2 in Section 3, and thus we can use the closed

form solutions derived in the proof of Theorem 1 and presented in Section 4.2 of the paper (again,

for the special case kM = 0). We now have multiple strategic traders, so the calculations involve

matrix manipulations.

Specifically, Σθθ is an m-dimensional matrix whose elements are all equal to one, while Σdiag is

an m-dimensional identity matrix. We thus have

Λ =


2 1 · · · 1

1 2 · · · 1
...

...
. . .

...

1 1 · · · 2

 and Λ−1 =
1

m+ 1


m −1 · · · −1

−1 m · · · −1
...

...
. . .

...

−1 −1 · · · m

 .
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Next,

Σθv =


1
...

1

 , Σθu =


−1
...

−1

 , Av =


1/(m+ 1)

...

1/(m+ 1)

 , Au =


−1/(m+ 1)

...

−1/(m+ 1)

 .

The coefficients of the quadratic equation on γ are therefore a = −m/(m+ 1)2, b = −(m −
1)/(m+ 1)2, and c = 1/(m+ 1)2, which in turn gives us γ = 1/m and βD = m. Thus,

α = γAv −Au =
1

m


1/(m+ 1)

...

1/(m+ 1)

+


1/(m+ 1)

...

1/(m+ 1)

 =
1

m


1
...

1

 ,

and so on the equilibrium path, aggregate demand is equal to D = αT θ+u = (1/m) ·m · v− v = 0.

Thus, for every m, the market price on the equilibrium path is also always equal to zero, not

revealing any information contained in the signals of the strategic traders and in the demand

coming from the liquidity traders.

2 Zero Intercepts in Equilibrium

In this section we prove the statement made informally in footnote 13 in Section 3.2 of the main

body of the paper that in our setting, linear equilibria with nonzero intercepts do not exist.

Proposition OA.1 Suppose there exists an equilibrium of the form:

• di(θi) = δi + αTi θi;

• P (θM , D) = β0 + βTMθM + βDD.

Then β0 = 0 and for all i, δi = 0.

Proof. Consider a particular realization of θi’s, θM , and u.

Then in this equilibrium, the realized price will be given by

P = P (θM , D) = β0 + βTMθM + βDD

= β0 + βTMθM + βDu+ βD

n∑
i=1

δi + βD

n∑
i=1

αTi θi. (OA.1)

By the definition of equilibrium, for every realization of θM and D, the price set by the market

maker is equal to the expected value of the security conditional on θM and D:

P (θM , D) = E[v|θM , D].
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Integrating over all possible realizations of θM and D, we thus get the following for the unconditional

expectation of the price:

E[P ] = E[v].

Since by assumption, E[v] = 0, and also E[θM ], E[u], and E[θi] (for all i) are equal to zero, by

taking the unconditional expectation of equation (OA.1), we get

0 = β0 + βD

n∑
i=1

δi. (OA.2)

Now, as in Step 2 of the proof of Theorem 1 in the paper, consider the expected payoff of

strategic trader i from submitting demand d after observing signal θ̃i. It is equal to

E

d
v − β0 − βTMθM − βD

d+
∑
j 6=i

δj +
∑
j 6=i

αTj θj + u

∣∣∣∣∣∣ θi = θ̃i

 .
Except for the presence of constants β0 and δj , this is the same expression as in Step 2 of the

proof of Theorem 1. By the same logic as in that step, it has to be the case that βD > 0 and the

unique optimal demand d∗ is given by:

d∗ =
1

2βD
E

v − β0 − βTMθM − βD

∑
j 6=i

δj +
∑
j 6=i

αTj θj + u

∣∣∣∣∣∣ θi = θ̃i


= − 1

2βD

β0 + βD
∑
j 6=i

δj

+
1

2βD

ΣT
iv − βTMΣT

iM − βD

∑
j 6=i

αTj ΣT
ij + ΣT

iu

Σ−1
ii θ̃i,

By assumption, we also have d∗ = δi + αTi θ̃i. Since the equalities above have to hold for all

realizations θ̃i, it has to be the case that

δi = − 1

2βD

β0 + βD
∑
j 6=i

δi

 ,

which can be rearranged as

β0 + βD
∑
j 6=i

δj + 2βDδi = 0. (OA.3)

Combining equations (OA.2) and (OA.3), we see that for every i, βDδi = 0, and thus δi = 0,

and therefore we also have β0 = 0.

3 Proof of Proposition 1

We first prove the following Lemma.

5



Lemma OA.1 Consider a market with at least two strategic traders, and suppose the signals of

traders 1 and 2 can be represented as (θ1; θC) and (θ2; θC), respectively, in such a way that random

vector θC has dimension of at least 1, random vector θ1 is orthogonal to θC , and random vector θ2 is

also orthogonal to θC .1 Represent trader 1’s and trader 2’s equilibrium strategies as vectors (α1;α1C)

and (α2;α2C), respectively, with dimensions corresponding to those of (θ1; θC) and (θ2; θC). Then

α1C = α2C .

Proof. Consider equilibrium condition (8) from the proof of Theorem 1 in the main body of the

paper, and rewrite it for trader 1 as follows

2

(
V ar(θ1) 0

0 V ar(θC)

)(
α1

α1C

)
=

1

βD

((
Cov(θ1, v)

Cov(θC , v)

)
−

(
Cov(θ1, θM )βM

Cov(θC , θM )βM

))

−

(
Cov(θ1, θ2) 0

0 V ar(θC)

)(
α2

α2C

)

−
∑
j>2

(
Cov(θ1, θj)αj

Cov(θC , θj)αj

)
−

(
Cov(θ1, u)

Cov(θC , u)

)
.

Restricting attention to the bottom block of rows (corresponding to the signal θC), we get

2V ar(θC)α1C =
1

βD
(Cov(θC , v)− Cov(θC , θM )βM )

− V ar(θC)α2C

−
∑
j>2

Cov(θC , θj)αj − Cov(θC , u).

(OA.4)

The corresponding equation for trader 2 is

2V ar(θC)α2C =
1

βD
(Cov(θC , v)− Cov(θC , θM )βM )

− V ar(θC)α1C

−
∑
j>2

Cov(θC , θj)αj − Cov(θC , u).

(OA.5)

Subtracting equation (OA.5) from equation (OA.4), we get

2V ar(θC)(α1C − α2C) = V ar(θC)(α1C − α2C),

and so V ar(θC)(α1C − α2C) = 0. Since V ar(θC) is full rank, we get α1C = α2C .

We can now finish the proof of Proposition 1. Without loss of generality, assume that θA and

θB are orthogonal (this can always be achieved by a change of basis). Slightly abusing notation,

1We maintain the assumption that matrices V ar((θ1; θC)) and V ar((θ2; θC)) are full rank.
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let (αA;αB) be the equilibrium strategy of trader A (and thus, by Lemma OA.1, the equilibrium

strategy of trader B is αB).

The expected profit of trader A is equal to βD
(
αTAV ar(θA)αA + αTBV ar(θB)αB

)
, and the ex-

pected profit of trader B is equal to βDα
T
BV ar(θB)αB. Since matrix V ar(θA) is positive semidefi-

nite, αTAV ar(θA)αA ≥ 0, and thus the expected profit of trader A is at least as high as the expected

profit of trader B.

4 Proof of Proposition 2

Bounds on V ar(p). As p = E[v|D], we have 0 ≤ V ar(p) ≤ σvv. The fact that the upper bound

can be approached arbitrarily closely (in class C1, and therefore also in classes C2 and C3) follows

directly from Theorem 2 for the case Cov(u, v|θ, θM ) = 0. Note also that the (lack of) upper bound

on V ar(D), the lower bound on βD, and the lower bound on the expected loss of liquidity traders

also follow directly from this case of Theorem 2.

To see that the lower bound on V ar(p) can also approached arbitrarily closely, consider a market

with two strategic traders (and liquidity demand u independent of all other variables). Trader 1

observes v + ε, where ε is distributed normally with mean zero and variance σεε, independently of

u and v. Trader 2 observes v − ε. The resulting covariance matrix is

Ω =


σvv σvv σvv 0

σvv σvv + σεε σvv − σεε 0

σvv σvv − σεε σvv + σεε 0

0 0 0 σuu

 .

In this case,

Λ = Σdiag + Σθθ =

(
2(σvv + σεε) σvv − σεε
σvv − σεε 2(σvv + σεε)

)
,

Λ−1 =
1

3σ2
vv + 10σvvσεε + 3σ2

εε

(
2(σvv + σεε) −σvv + σεε

−σvv + σεε 2(σvv + σεε)

)
,

Av = Λ−1Σθv =
1

3σ2
vv + 10σvvσεε + 3σ2

εε

(
(σvv + 3σεε)σvv

(σvv + 3σεε)σvv

)
=

σvv
3σvv + σεε

(
1

1

)
.

Next, using the compact formula for the case when liquidity demand u is independent of the other

variables in the model, we get

βD =

√
ATv ΣdiagAv

σuu
=

σvv
3σvv + σεε

√
2(σvv + σεε)

σuu

and

α =
1

β
Av =

√
σuu

2(σvv + σεε)

(
1

1

)
.
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Finally,

V ar(p) = V ar
(
βD(αT θ + u)

)
= β2

D

(
αTΣθθα+ σuu

)
= 2

(
σvv

3σvv + σεε

)2 σvv + σεε
σuu

(
σuu

2(σvv + σεε)
× 4σvv + σuu

)
= 2

σ2
vv

(3σvv + σεε)2
(2σvv + σvv + σεε)

=
2σ2

vv

3σvv + σεε
.

Thus, V ar(p) can be arbitrarily close to zero when σεε is large.

Lower bounds on V ar(D). Consider first class C1. As the signals of the strategic traders (and

thus their demands) are uncorrelated with u, we have V ar(D) ≥ σuu, and thus it is sufficient to

find a sequence of markets for which V ar(D) → σuu. Consider the same two-trader setup as the

one we used to establish the infimum for V ar(p). In that example,

V ar(D) = V ar
(
αT θ + u

)
= αTΣθθα+ σuu

=
σuu

2(σvv + σεε)
× 4σvv + σuu

= σuu
3σvv + σεε
σvv + σεε

,

and so as σεε grows large, V ar(D) converges to σuu.

To establish that inf V ar(D) = 0 on class C2 (and thus also C3), consider a market with two

groups of n strategic traders. The demand of liquidity traders u is uncorrelated with the value of

the asset v. In the first group, all traders observe θ1 = v perfectly. In the second group, all traders

observe θ2 = u perfectly.

When a market contains several groups of identical traders, it is convenient to use the “hat”

notation and closed-form expressions from the proof of the special case of Theorem 2. (This proof

is in Appendix B of the main body of the paper.) Using that notation, we have

Σθθ =

(
σvv 0

0 σuu

)
and Σ̂diag =

1

n

(
σvv 0

0 σuu

)
,

and then

Λ̂ = Σθθ + Σ̂diag =
n+ 1

n

(
σvv 0

0 σuu

)
and

Âv = Λ̂−1Σθv =
n

n+ 1

(
1

0

)
, Âu = Λ̂−1Σθu =

n

n+ 1

(
0

1

)
.

Then, applying the closed-form expression from Step 1 of Appendix B of the main body of the
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paper, we obtain βD =
√
n
√

σvv
σuu

and the vector of multipliers for the two groups

α = Âv/βD − Âu =
1

n+ 1

 √
σuu
σvv

√
n

−n

 .

Thus, in this market, the aggregate demand is

D = αT θ + u =

√
n

n+ 1

√
σuu
σvv

v − n

n+ 1
u+ u,

and so

V ar(D) =
n

(n+ 1)2
σuu +

1

(n+ 1)2
σuu =

σuu
n+ 1

.

In particular, V ar(D) converges to zero as n grows.

Upper bounds on −E[u(v − p)]. First, we establish that sup (−E[u(v − p)]) =
√
σvvσuu/2 in

classes C1 and C2. Note that this is precisely the expected loss of the liquidity traders in the

canonical one-trader Kyle (1985) model. Thus, it is enough to show that for any other market in

C1 and C2, the expected loss of the liquidity traders cannot exceed this value. To see this, note

first that in such markets, σuv = 0. We have p = E[v|D] = Cov(v,D)
V ar(D) D. The expected loss of the

liquidity traders is E[u(p− v)] = Cov(u, p− v) = Cov(u, p) = Cov(v,D)Cov(u,D)
V ar(D) . Project D on v and

u: we then have D = av+bu+cw, for some coefficients a, b, and c, where w is normally distributed

with mean zero and variance one, and is independent of v and of u. We then get:

E[u(p− v)] =
σvvσuuab

σvva2 + σuub2 + c2

≤ σvvσuuab

σvva2 + σuub2

=
1

σ−1
uu a/b+ σ−1

vv b/a

≤ 1

2

√
σvvσuu,

where the last inequality follows from the fact that for any two real numbers (in this case, σ−1
uu a/b

and σ−1
vv b/a), their arithmetic average is weakly higher than their geometric average.

Second, we establish that sup (−E[u(v − p)]) =
√
σvvσuu in C3. We have E[u(p − v)] =

Cov(u, p − v) ≤ √σuu
√
V ar(p− v) ≤ √σuu

√
σvv, where the first inequality is just the classical

Cauchy–Schwarz inequality, and the second inequality follows from the fact that E[v − p|p] = 0,

and thus V ar(v) = V ar(v − p) + V ar(p) ≥ V ar(v − p).
To show that the bound is tight, consider a rescaled version of Example OA.1 in Section 1.1.

Given a normal variable w with mean zero and variance one, let the asset value be v =
√
σvvw and

the liquidity demand be u = −√σuuw, so that V ar(v) = σvv, V ar(u) = σuu, and the asset value is

perfectly negatively correlated with liquidity demand. There is one strategic trader who observes
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signal θ1 = v (and thus also knows u). The resulting covariance matrix is

Ω =

 σvv σvv −√σvvσuu
σvv σvv −√σvvσuu

−√σvvσuu −√σvvσuu σuu

 .

As there is only one strategic trader, many matrices become scalars. We have Λ = Σdiag + Σθθ =

2σvv, Λ−1 = 1/(2σvv), Av = Λ−1Σθv = 1/2, and Au = Λ−1Σθu = −1
2

√
σuu
σvv

. Using our closed-form

characterization, we find βD =
√

σvv
σuu

and α1 =
√

σuu
σvv

. Thus, in this market, the demand of the

strategic trader is equal to
√

σuu
σvv

v = −u, and the aggregate demand and the price are always equal

to zero. Since the strategic trader demands quantity −u and the price is zero, his expected profit

is E[−uv] =
√
σvvσuu, which is also the expected loss of liquidity traders.

Upper bounds on βD. First, consider any market in class C1. As p = βDD, we have E[u(p −
v)] = Cov(u, p) − Cov(u, v) = Cov(u, p) = βDCov(u,D). And as the signals of the traders are

uncorrelated with u, Cov(u,D) = σuu. Hence, βD = E[u(p − v)]/σuu. Using the upper bound

obtained for the expected loss of liquidity traders, we immediately obtain the upper bound on βD.

Next, consider classes C2 and C3. Consider the two-group market used to establish the lower

bound on V ar(D) in classes C2 and C3. Recall that, in this configuration, we obtained βD =
√
n
√

σvv
σuu

, which grows without bound as n grows large.

5 Examples

In this section, we give several additional examples that illustrate the general framework presented

in the main body of the paper and also help develop intuition for our information aggregation results.

We first present a simple yet seemingly counterintuitive example in which a trader informed about

the value of the security trades in the direction opposite to his estimate of that value. Next, we

study what happens when one of the strategic traders is informed about the demand of liquidity

traders. We conclude by analyzing several examples in which the market maker possesses private

information about the value of the security and study how this information gets incorporated into

the price of the security and how it affects equilibrium trading strategies and the sensitivity of

equilibrium prices to market demand.

5.1 Trading “Against” Own Signal

We start with an example of information structure under which a trader who receives a signal about

the value of the security trades in the opposite direction: if, based on his information, the expected

value of the security is positive, then he shorts the security; if it is negative, then he buys it. Note

that since our model is single-period, there cannot be any dynamic incentives to manipulate prices,
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of the form “I will try to mislead others first, and then take advantage of the mispricing.”2

Example OA.3 The value of the security is distributed as v ∼ N(0, 1). There are two strategic

traders. Trader 1 observes a noisy estimate of v: θ1 = v + ρ1ξ, where ξ ∼ N(0, 1) is a random

variable independent of v, and ρ1 is a parameter that determines how accurate trader 1’s signal

is (e.g., if ρ1 = 0, then trader 1 observes v exactly, and if ρ1 is very large, then trader 1’s signal

is not very accurate). Trader 2 also observes a noisy estimate of v: θ2 = v + ρ2ξ, with the same

“driver” of noise, ξ, as in trader 1’s signal, but with a potentially different magnitude of noise,

ρ2. Finally, there is demand from liquidity traders, u ∼ N(0, 1), which is independent of all other

random variables. Formally, the resulting covariance matrix is

Ω =


1 1 1 0

1 1 + ρ2
1 1 + ρ1ρ2 0

1 1 + ρ1ρ2 1 + ρ2
2 0

0 0 0 1

 .

From the analysis and closed-form characterization in the main body of the paper, we know that in

the unique linear equilibrium the pricing rule is characterized by some βD > 0, and the strategies

of traders 1 and 2 are characterized by:(
α1

α2

)
=

1

βD
Λ−1

(
1

1

)
, (OA.6)

where Λ =

(
2 + 2ρ2

1 1 + ρ1ρ2

1 + ρ1ρ2 2 + 2ρ2
2

)
.

Using the matrix inversion formula and setting δ = 1
βD det(Λ) (which is positive, since Λ is

positive definite), we get(
α1

α2

)
= δ

(
2 + 2ρ2

2 −1− ρ1ρ2

−1− ρ1ρ2 2 + 2ρ2
1

)(
1

1

)
= δ

(
1 + 2ρ2

2 − ρ1ρ2

1 + 2ρ2
1 − ρ1ρ2

)
. (OA.7)

Thus, if ρ1 = 2ρ2 + 1
ρ2

, trader 1 never trades, despite θ1 being informative about the value of the

security, and for ρ1 > 2ρ2 + 1
ρ2
> 0, trader 1 always trades in the direction opposite to his signal θ1,

despite θ1 being positively correlated with the value of the security, v. Similarly, if ρ2 is equal to or

greater than 2ρ1 + 1
ρ1

, then trader 2 does not trade or trades in the direction opposite to his signal.

To get the intuition behind this seemingly puzzling behavior, consider a slight variation of

Example OA.3.

Example OA.4 The value of the security is v ∼ N(0, 1). There are two strategic traders. Trader 1

observes a noisy estimate of v: θ1 = v+ ξ, where ξ ∼ N(0, 1), independent of v. Trader 2 observes

2For examples of settings in which such dynamic incentives do arise, see Brunnermeier (2005) and Sadzik and
Woolnough (2015).

11



ξ: θ2 = ξ. The demand from liquidity traders, u ∼ N(0, 1), is independent of all other random

variables. The resulting covariance matrix is

Ω =


1 1 0 0

1 2 1 0

0 1 1 0

0 0 0 1

 .

In this case, Λ =

(
4 1

1 2

)
and

(
α1

α2

)
=

1

βD
Λ−1

(
1

0

)
= δ

(
2 −1

−1 4

)(
1

0

)
= δ

(
2

−1

)
(OA.8)

for some δ > 0, and thus trader 2 trades in the direction opposite to his signal. Note that in this

example, trader 2 is not informed about the value of the security: his signal ξ is independent of v.

However, he is informed about the bias in trader 1’s signal, and thus knows in which direction trader

1 is likely to “err” when submitting his demand. Thus, trader 2, by partly “undoing” this error

(i.e., trading against it), can in expectation make a positive profit, despite not having any direct

information about the value of the security. In a sense, while trader 1 trades on “fundamental”

information, trader 2 trades on “technical” information: trader 1’s ability to make money is due to

his information about the value of the security, while trader 2’s ability to make a profit is due to

his information about the “mistakes” of other agents in the economy.3

In Example OA.3, the intuition is similar. If ρ2 is large relative to 2ρ1 + 1
ρ1

, then the main

“chunk” of trader 2’s information is about the mistake that trader 1 makes, and not about the

fundamental value of the security. This causes trader 2 to want to “undo” that mistake and trade

“against” his signal, while trader 1 continues to trade in a natural direction. When ρ2 = 2ρ1 + 1
ρ1

,

the incentives of trader 2 to trade on “fundamental” information (the positive correlation of his

signal with the value of the security) and on the “technical” information (the positive correlation

of his signal with the mistake of trader 1) cancel out, and trader 2 ends up not trading.

Examples OA.3 and OA.4 illustrate that a strategic trader’s behavior in equilibrium is driven not

only by the correlation of his information and the value of the asset, but also by the informational

content of his signals relative to the information already contained in the signals and the resulting

behavior of other agents—potentially even to the point of reversing the direction of his trade. It is

this flexibility that allows strategic traders’ information to get fully aggregated and incorporated in

prices as market size grows, even for very rich information structures. In contrast, the behavior of

3Formally, we say that trader i has “fundamental” information if Cov(θi, v|θM ) 6= 0, and say that trader i has
“technical” information if Cov(θi, u|θM ) 6= 0 or Cov(θi, θj |θM ) 6= 0 for some j 6= i. If a trader has neither fundamental
nor technical information, then in equilibrium he does not trade, and does not make any profit. In Section 6, we
formally state and prove this result (Proposition OA.2), and also explore in more detail the dependence and non-
dependence of equilibrium trading strategies on various types of information.
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liquidity traders is exogenous, and is not endogenously affected by what information it contains. As

a result, the information contained in liquidity demand is fully incorporated in market prices only

under appropriate correlation structures (see Section 5 in the main body of the paper for details).

5.2 Information about Liquidity Demand

In this section, we present an example showing what happens when one of the strategic traders does

not know anything about the value of the security, but is informed about the amount of liquidity

trading. We then compare the equilibrium to that of the standard model without such a trader.

Example OA.5 The value of the security is distributed as v ∼ N(0, σvv), and the demand from

liquidity traders is distributed as u ∼ N(0, σuu), independently of v. There are two strategic traders.

Trader 1’s signal is equal to v: θ1 = v. He is fully informed about the value of the security, just like

in the standard Kyle model. Trader 2 is uninformed about the value of the security, but has insider

information about the demand from liquidity traders: θ2 = u. Formally, the covariance matrix is

Ω =


σvv σvv 0 0

σvv σvv 0 0

0 0 σuu σuu

0 0 σuu σuu

 .

The auxiliary matrices in this example are:

Λ =

(
2σvv 0

0 2σuu

)
, Au =

(
0
1
2

)
, and Av =

(
1
2

0

)
.

Coefficient b in the quadratic equation is equal to zero, and therefore

γ =

√
− c
a

=

√
σuu
σvv

,

α1 =
1

2
γ =

1

2

√
σuu
σvv

,

α2 = −1

2
.

For comparison, if the second strategic trader was not present, the model would reduce to the

standard model of Kyle (1985), and the equilibrium would be characterized by

γ = 2

√
σuu
σvv

,

α1 =

√
σuu
σvv

.

In other words, when the second strategic trader (who is informed about the demand from liquidity

traders) is present in the market, that trader “takes away” one half of that “liquidity” demand. As

13



a result, the first strategic trader, who knows the value of the security, trades half as much as he

would in the absence of that second trader, and the market maker’s pricing rule is twice as sensitive.

Therefore, for any realization of v and u, the price in the market with the second strategic trader

will be exactly the same as that in the market without that trader—and thus the informativeness of

prices is not affected in either direction by whether there is a trader in that market who observes the

trading flow from liquidity traders. Likewise, the expected loss of liquidity traders is also unaffected

by the presence of a trader who observes their demand. Since, by construction, the market maker

in expectation breaks even, it has to be the case that the profit of the second strategic trader comes

out of the first trader’s pocket. In fact, the second trader takes away exactly one half of the first

trader’s profit.4 Also, as in Example OA.4, the second trader is trading on “technical” information,

and is only able to make a profit because of the “mistakes” of other agents in the economy.

Example OA.5 shows that when liquidity demand is fully observed by some strategic traders,

they may have an incentive to trade in the opposite direction, effectively removing part of that

demand from the market. If the number of such strategic traders grows large, they may end up

removing all liquidity demand from the market, potentially hindering information aggregation (and

possibly the existence of limit equilibrium) in large markets (see, e.g., footnote 20 in the main body

of the paper). Thus, in Sections 5 and 6 in the main body of the paper we assume not only that

the variance of liquidity demand is positive, but also that it remains positive when we condition it

on the signals of large groups of strategic traders and the market maker.

5.3 Informed Market Maker

In the preceding examples, the market maker does not receive any information other than the

aggregate demand coming from strategic and liquidity traders. In this subsection, we turn to

examples in which the market maker does possess some additional information. We show how this

information affects the strategies of other traders and illustrate the interplay between the weight the

market maker places on this additional information and the weight she places on market demand.

Our first two examples illustrate that the equilibrium obtained when the market maker has

private information is generally not the same as when that information is publicly available (i.e.,

known both to the market maker and to all strategic traders).5 This difference turns out to be

important when we study the informativeness of prices as the sizes of some (but not all) groups of

strategic traders become large (Section 6 in the main body of the paper). In that setting, as the

sizes of some of the groups become large, the market behaves as if the signals of those groups were

4To see this, note that the prices in the two markets are always the same, realization by realization, while the
demand of the first strategic trader, in the presence of the second one, is exactly one half of what it would be in the
absence of that trader.

5Jain and Mirman (1999) and Luo (2001) study extensions of the Kyle (1985) model with a partially informed
market maker and with partially informative public information, respectively. The difference between the two cases
can be seen by comparing their results (setting σ2

i = 0 in Luo (2001)). Our Examples OA.6 and OA.7 are similar,
though not identical, to the models of Jain and Mirman (1999) and Luo (2001). We present the examples to emphasize
the distinction between the two cases within the same setup, as this distinction is important for our hybrid-market
information aggregation results.
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observed directly by the market maker—and not as if the signals of those groups were observed

publicly.

Example OA.6 The value of the security is v ∼ N(0, 1). There is one strategic trader, who

observes signal θ = v + ε1. The market maker observes signal θM = v + ε2. Variables ε1 and

ε2 are distributed normally with mean 0 and variance 1, independently of each other and of all

other variables. The demand from liquidity traders is also independently distributed as u ∼ N(0, 1).

Formally, the covariance matrix that describes this information structure is

Ω =


1 1 1 0

1 2 1 0

1 1 2 0

0 0 0 1

 .

Applying the formulas derived in Section 3, we get Σdiag = Σθθ = ΣMM = 2 and ΣθM = Σθv =

ΣMv = 1. Thus, Λ = 2 + 2− 1/2 = 7/2, Au = 0, and Av = 2(1− 1/2)/7 = 1/7. The coefficients in

the quadratic equation for γ are a = −2/49, b = 0, and c = 1, and thus

βD =
1

γ
=

√
2

7
.

Hence, the strategic trader’s behavior is given by

α =
1

βD
Av =

1

2

√
2,

and the market maker’s sensitivity to her own signal is

βM = Σ−1
MM

(
ΣMv − ΣT

θMAv
)

=
3

7
.

Consider now a variation of Example OA.6, in which the market maker’s signal is public infor-

mation (i.e., known to both the market maker and the strategic trader).

Example OA.7 The value of the security is v ∼ N(0, 1). The market maker observes signal

θM = v + ε2. The strategic trader now observes two signals, θ1 = v + ε1 and θ2 = v + ε2. Both

ε1 and ε2 are normally distributed with mean 0 and variance 1, independently of each other and of

all other variables. The demand from liquidity traders is independently distributed as u ∼ N(0, 1).

The covariance matrix that describes this information structure is now

Ω =


1 1 1 1 0

1 2 1 1 0

1 1 2 2 0

1 1 2 2 0

0 0 0 0 1

 .
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We now have Σdiag = Σθθ =

(
2 1

1 2

)
, ΣMM = 2, ΣθM =

(
1

2

)
, Σθv =

(
1

1

)
, and ΣMv = 1.

Thus, Λ =

(
7/2 1

1 2

)
, Λ−1 = 1/6

(
2 −1

−1 7/2

)
, Au =

(
0

0

)
, andAv = Λ−1

((
1

1

)
−

(
1

2

)
· 1/2

)
=

1/6

(
1

−1/2

)
.

The coefficients of the quadratic equation on γ are now:

a = −1/36

(
1

−1/2

)T (
2 1

1 2

)(
1

−1/2

)
= −1/24, b = 0, and c = 1,

and thus

βD =
1

γ
=

√
6

12
,

the strategic trader’s behavior is given by

α =
1

βD
Av =

( √
6

3

−
√

6
6

)
,

and the market maker’s sensitivity to her own signal is now given by

βM = Σ−1
MM

(
ΣMv − ΣT

θMAv
)

=
1

2
.

The equilibria in these two examples are substantively different: the sensitivities of the market

maker to the aggregate demand and to her own signal are different, and the sensitivity of the

strategic trader’s demand to signal θ1 is different as well. We can also compute the expected profits

that the strategic trader makes in these two markets (and thus the losses of liquidity traders): in

the first example, the expected profit is
√

2/7, while in the second one it is greater:
√

6/12. These

differences illustrate the point that having the market maker observe a signal is substantively

different from having that signal observed publicly.

Our next example considers the case in which a strategic trader’s information is strictly worse

than the information available to the market maker.

Example OA.8 Let ν1, ν2, ε1, ε2, and u be independent random variables, each distributed nor-

mally with mean 0 and variance 1. The value of the security is v = ν1 + ν2. The demand from

liquidity traders is u. There are two partially informed strategic traders and a partially informed

market maker. Trader 1’s signal is θ1 = ν1 + ε1. Trader 2’s signal is θ2 = ν2 + ε2. The market

maker’s signal is θM = ν2. Note that while trader 1 possesses some “exclusive” information about

the value of the security, trader 2 does not (because ν2 is observed by the market maker, and ε2 is
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pure noise). Formally, the covariance matrix is

Ω =


2 1 1 1 0

1 2 0 0 0

1 0 2 1 0

1 0 1 1 0

0 0 0 0 1

 .

The auxiliary matrices in this example are:

Λ =

(
4 0

0 3

)
, Au =

(
0

0

)
, and Av =

(
1
4

0

)
.

Therefore, in this case, we have (
α1

α2

)
=

1

βD

(
1
4

0

)
,

and so α2 = 0. Thus, trader 2 does not trade in equilibrium. This illustrates a more general

phenomenon: in equilibrium, a strategic trader cannot make a positive profit (and does not trade)

if his information is the same as or worse than (in the information-theoretic sense) that of the

market maker.6

Our final example considers a sequence of markets, indexed by the number of strategic traders,

m. All traders receive the same information, which is imperfectly correlated with both the value

of the asset and the market maker’s information.

Example OA.9 The value of the security, v, the demand from liquidity traders, u, and two infor-

mation shocks, ε1 and ε2, are all distributed normally with mean 0 and variance 1, independently

of each other. There are m identically informed strategic traders and a partially informed market

maker. Each strategic trader observes a signal θ1 = v + ε1. The market maker observes a signal

θM = v + ε2 . Formally (indexing all matrices by the number of strategic traders in the market,

m), the covariance matrix is

Ωm =



1 1 1 · · · 1 1 0

1 2 2 · · · 2 1 0

1 2 2 · · · 2 1 0
...

...
...

. . .
...

...
...

1 2 2 · · · 2 1 0

1 1 1 · · · 1 2 0

0 0 0 · · · 0 0 1


.

6See Proposition OA.2 in Section 6 for a formal statement and proof of this result.
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The auxiliary matrices are:

Λm =



31
2 11

2 · · · 11
2 11

2

11
2 31

2 · · · 11
2 11

2
...

...
. . .

...
...

11
2 11

2 · · · 31
2 11

2

11
2 11

2 · · · 11
2 31

2


, so that (Λm)−1 =



3m+1
6m+8

−3
6m+8 · · · −3

6m+8
−3

6m+8
−3

6m+8
3m+1
6m+8 · · · −3

6m+8
−3

6m+8
...

...
. . .

...
...

−3
6m+8

−3
6m+8 · · · 3m+1

6m+8
−3

6m+8
−3

6m+8
−3

6m+8 · · · −3
6m+8

3m+1
6m+8


,

Amu =


0
...

0

 , and Amv =


1

3m+4
...
1

3m+4

 .

Coefficient b in the quadratic equation is equal to zero, and so

γm =

√
− c
a

=
3m+ 4√

2m
,

αmi = γmAmvi =
1√
2m

,

βmM =
1

2

(
1− m

3m+ 4

)
=

2m+ 4

6m+ 8
=

m+ 2

3m+ 4
.

Note that the weight βM that the market maker places on her own signal is not constant in m.

If there were no strategic traders at all, and only noise traders (m = 0, although strictly speaking

that case is not allowed by our general setup), it would be equal to 1
2 = Cov(v,θM )

V ar(θM ) . As m grows,

this weight is monotonically decreasing (converging to 1
3 in the limit). Intuitively, as m grows,

an increasingly large fraction of the market maker’s information about the value of the security is

also contained in the strategic demand, and can be extracted from it by the market maker—thus

leaving a smaller part for the signal θM that the market maker observes directly.

The second observation concerns the informativeness of prices. Take any m, and consider a

realization of θ1, θM , and u. In this realization, demand D is equal to mαmi θ1 +u = m√
2m
θ1 +u, and

the market price P set by the market maker is equal to βmDD+βmMθM = m
3m+4θ1 + m+2

3m+4θM +
√

2m
3m+4u.

Now, fix the realization of random variables, and let the number of strategic traders, m, grow

to infinity. Then price P converges to 1
3θ1 + 1

3θM . But notice that this expression is precisely

the expected value of the asset, v, conditional on the information available in the market: u is

uninformative, because it is independent of all other random variables, and

E[v|θ1, θM ] = Cov

(
v,

(
θ1

θM

))T
V ar

((
θ1

θM

))−1(
θ1

θM

)

=
(

1 1
)( 2 1

1 2

)−1(
θ1

θM

)
=

1

3
θ1 +

1

3
θM .
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Hence, as the number of strategic traders becomes large, their information and the information of

the market maker get incorporated into the market price with precisely the weights that a Bayesian

observer with access to all information available in the market would assign. In other words, as

the number of strategic traders becomes large, all information available in the market is aggregated

and revealed by the market price. Of course, this is not a coincidence: as we show in Theorem 2

in the main body of the paper, the information aggregation result holds very generally.

6 The Impact of Informative and Uninformative Signals on Trad-

ing Strategies

In this section, we prove the statement made in footnote 3 in Section 5.1 and also following Exam-

ple OA.8 in Section 5.3 that a trader who possesses neither fundamental nor technical information

(and who is thus less informed than the market maker) does not trade in equilibrium and thus does

not make a profit. We also show that the presence of such a trader does not affect the trading

behavior of other agents or the pricing behavior of the market maker. We then present two exam-

ples showing that the interaction of different types of information can in general be quite subtle:

a trader who possesses only technical information may be able to make a positive profit even if

he is the only strategic trader in the market, and a trader who has some signals less informative

than those of the market maker may nevertheless use those signals for trading if he also has some

other, more informative signals. We conclude by showing that if a sub-vector of strategic traders’

signals is uninformative (rather than simply being less informative than the signal of the market

maker), then the traders do not use this sub-vector of signals in equilibrium, and the presence of

these signals has no impact on the agents’ trading behavior or on the pricing behavior of the market

maker.

Formally, we say that trader i is (weakly) less informed than the market maker if conditional

on the market maker’s signal θM , trader i’s signal θi does not contain any additional information

about other random variables in the model: v, u, and θj for j 6= i:

Cov(θi, v|θM ) = Cov(θi, u|θM ) = Cov(θi, θj |θM ) = 0.

Note that this is equivalent to the trader having neither fundamental nor technical information, as

defined in footnote 3 in Section 5.1 in the main body of the paper.

Proposition OA.2 Suppose trader i is less informed than the market maker. Then in equilibrium,

αi = 0, and the profit of trader i is zero. The equilibrium strategies of all other traders and the

pricing behavior of the market maker are the same as in the economy in which trader i is not

present.

Proof. For notational simplicity, suppose i = 1, and suppose the dimensionality of trader 1’s signal

is k (i.e., θ1 ∈ Rk). Note that by the maintained Assumption 1 of Section 3, at least one strategic
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trader receives at least some information about the value of the security that is not contained in

the market maker’s signal, and thus there are at least two strategic traders in this market: n ≥ 2.

From the closed-form solution given in Sections 4.1 and 4.2 of the main body of the paper, the

vector α that “stacks” all trading strategy vectors αj on top of each other is given by

α =
1

βD
Av −Au

= Λ−1

(
1

βD
Cov(θ, v|θM )− Cov(θ, u|θM )

)
.

Note first that the assumption that trader 1 is less informed than the market maker implies

that the top k elements of vector
(

1
βD
Cov(θ, v|θM )− Cov(θ, u|θM )

)
are all zero.

Next, consider matrix Λ = Σdiag + V ar(θ|θM ).

Λ =


Σ11 0 · · · 0

0 Σ22 · · · 0
...

...
. . .

...

0 0 · · · Σnn

+


V ar(θ1|θM ) 0 · · · 0

0 V ar(θ2|θM ) · · · Cov(θ2, θn|θM )
...

...
. . .

...

0 Cov(θn, θ2|θM ) · · · V ar(θn|θM )


(OA.9)

=

(
Σ11 + V ar(θ1|θM ) 0

0 M

)
, (OA.10)

where M is an invertible matrix.

Thus,

Λ−1 =

(
(Σ11 + V ar(θ1|θM ))−1 0

0 M−1

)
, (OA.11)

and therefore in vector

α = Λ−1

(
1

βD
Cov(θ, v|θM )− Cov(θ, u|θM )

)
,

the first k elements are all zero—and these are precisely the elements that describe the equilibrium

trading strategy of trader 1, α1. The result about the zero profit of trader 1 is then immediate.

Next, the first k elements of vector Av = Λ−1Cov(θ, v|θM ) and vector Au = Λ−1Cov(θ, u|θM )

are all zero, and so it is immediate that the coefficients a, b, and c of the quadratic equation that

pins down market depth γ = 1/βD are the same as in the corresponding quadratic equation for

the market in which trader 1 is not present (see Section 3.2 of the main body of the paper for the

closed-form solution formulas). Thus, the presence of trader 1 does not affect βD.

Finally, from the block-diagonal formulas in equations (OA.9), (OA.10), and (OA.11), it follows

that the elements of vectors Av and Au after the first k are exactly the same as in the corresponding

vectors for the market in which trader 1 is not present. This observation, combined with the
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observations that the first k elements of Av and Au are all zero, and that βD is not affected by

the presence of trader 1, imply that βM is not affected by the presence of trader 1 and that the

elements of vector α after the first k are exactly the same as in the corresponding vector for the

market in which trader 1 is not present.

The statement of Proposition OA.2 is intuitive, but it is important to note that the interaction

of information and trading can in general be quite subtle. To illustrate the subtlety, we present

two examples. The first example shows that a trader who possesses only technical information may

still be able to make a positive profit even if he is the only strategic trader in the market.7 In the

example, the reason for the ability of the technical trader to make a profit is that liquidity demand

is informative about the value of the security, and so the market maker’s pricing rule is sensitive to

aggregate demand. The technical strategic trader, in turn, is informed about the “bias” in liquidity

demand.

Example OA.10 The value of the security is distributed as v ∼ N(0, 1). Liquidity demand is

distributed as u = v+ ε, where ε ∼ N(0, 1). Random variables v and ε are independent. There is a

single strategic trader in the market, whose signal is given by θ1 = ε. The market maker does not

directly observe any signals (km = 0).

To compute a linear equilibrium, suppose the sensitivity of the market maker’s pricing rule is

βD > 0 and suppose the strategic trader’s trading rule is given by multiplier α1. The aggregate

demand D is then equal to v + (1 + α1)ε, and the expected value of the security conditional on

aggregate demand is then given by

E[v|D] =
1

1 + (1 + α1)2
D.

Thus, βD = 1
1+(1+α1)2

.

On the other hand, suppose the strategic trader observes a realization θ̃ of his signal. If he

submits demand d, his expected profit is equal to

E
[
d
(
v − βD(v + θ̃ + d)

)]
= −βD

(
θ̃d+ d2

)
.

Thus, the optimal demand is d = −θ̃/2, and so α1 = −1/2, which in turn implies βD = 4/5 and a

positive expected profit of trader 1 (conditional on observing realization θ̃ of his signal, trader 1’s

expected profit is equal to θ̃2/5).

Our next example shows that for Proposition OA.2 to hold, it is important that a trader’s entire

vector of signals is less informative than the signal of the market maker. If only some of trader

i’s signals are less informative, while other ones contain useful information that the market maker

7Strictly speaking, the setting of the example violates Assumption 1 of our model, which states that at least
one strategic trader in the market must possess some fundamental information. Thus, our general results are not
applicable to this setting. Nevertheless, as we show, there still exists a unique linear equilibrium in this example.
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does not observe, then the trader may end up putting non-zero weights on the “less informative”

signals in equilibrium.

Example OA.11 The value of the security is distributed as v ∼ N(0, 1). There is a single strategic

trader in the market, who observes a vector of signals (θ1; θ2) ∈ R2. The first component of the

vector is given by θ1 = v+ δ, where δ ∼ N(0, 1) is a random variable independent of v. The second

component is θ2 = δ. The market maker’s signal is given by θM = δ. Finally, the demand from

liquidity traders is u ∼ N(0, 1), distributed independently of v and δ.

Note that the second component of the strategic trader’s vector of signals is (weakly) less infor-

mative than the market maker’s signal: it contains no additional information. By Proposition OA.2,

if that were the only information that the trader observed, he would not trade based on it. In Ex-

ample OA.11, however, that is not the case. In the unique equilibrium, the strategic trader will put

negative weight on component θ2: his demand is given by d = (θ1 − θ2) = v, and so α1 = (1;−1).

The market maker ignores her signal (βM = 0), and puts weight βD = 1/2 on aggregate demand.

(Note that this equilibrium is essentially the same as the equilibrium of the standard Kyle (1985)

model, and that trader 1 having access to signal θ2 is essential for this equivalence: if trader 1 had

access only to signal θ1, the equilibrium would be substantively different, with, e.g., βM 6= 0.)

The last result of this section shows that if some elements of traders’ vectors of signals are

uninformative about all other relevant random variables (including the information of the market

maker), then traders will indeed not trade on that information—it will have no impact on their

trading. We use this result in the proof of the general case of Theorem 3 in Section 10, where

in some cases we add auxiliary uninformative signals to avoid having to deal with zero variance

matrices.

Formally, suppose each strategic trader i’s signal θi can be represented as a pair of signals

(θ
′
i; θ
′′
i ) in such a way that the combined vectors θ′ = (θ

′
1; . . . ; θ

′
n) and θ′′ = (θ

′′
1 ; . . . ; θ

′′
n) have the

property that vector θ′′ is uninformative:

Cov(θ′′, v) = Cov(θ′′, u) = Cov(θ′′, θ′) = Cov(θ′′, θM ) = 0.

(Note that for some traders i, θ
′
i or θ

′′
i may be empty, but we assume that both θ′ and θ′′ have at

least one element.) Let α′ and α′′ be the vectors of components of equilibrium demand multiplier

α corresponding to θ′ and θ′′.

Proposition OA.3 Suppose θ′′ is uninformative. Then α′′ = 0. Moreover, the equilibrium is not

affected by the presence of signals in θ′′: pricing multipliers βD and βM are the same as those in

the market where only signals in θ′ are observed, and vector of strategy multipliers α′ is the same

as the vector of strategy multipliers in the market where only signals in θ′ are observed.

Proof. The proof is similar to that of Proposition OA.2. From the closed-form solution given in
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Sections 4.1 and 4.2 of the main body of the paper, the vector α is given by

α =
1

βD
Av −Au

= Λ−1

(
1

βD
Cov(θ, v|θM )− Cov(θ, u|θM )

)
.

Since by assumption, θ′′ is uninformative, it is independent of u, v, and θM , and so the rows

corresponding to elements of θ′′ in the matrix
(

1
βD
Cov(θ, v|θM )− Cov(θ, u|θM )

)
are all zero. Call

this “Observation 1”.

Next, consider matrix Λ = Σdiag+V ar(θ|θM ) = Σdiag+Σθθ−ΣθMΣ−1
MMΣT

θM . Take any element

i from vector θ′ and any element j from vector θ′′ (these elements can be parts of the same trader’s

signal or be observed by different traders). Since by assumption, θ′′ is independent of both θ′ and

θM , the entries in matrix Λ in cells (i, j) and (j, i) are both zero (because the corresponding entries

are all zero in matrices Σdiag, Σθθ, and ΣθMΣ−1
MMΣT

θM . This, in turn, implies that the entries in

matrix Λ−1 in cells (i, j) and (j, i) are also both zero.8 Call this “Observation 2”.

Combining Observation 1 and Observation 2, we find that the entries in vector

α = Λ−1

(
1

βD
Cov(θ, v|θM )− Cov(θ, u|θM )

)
corresponding to the elements of θ′′ are all equal to zero.

The proof of the statement that the pricing multipliers βD and βM are the same as those in

the market where only signals in θ′ are observed, and that the vector of strategy multipliers α′ is

the same as the vector of strategy multipliers in the market where only signals in θ′ are observed,

is completely analogous to the proof of the statement in Proposition OA.2 that the equilibrium

strategies of traders j 6= i and the pricing behavior of the market maker are the same as in the

economy in which trader i (less informed than the market maker) is not present.

7 Rescaling Liquidity Demand

In this section, we formally show that equilibrium prices are not affected by the scale of liquidity

demand.

8To see this, note that by rearranging the rows and columns of matrix Λ to first list the entries corresponding to
θ′ and then the entries corresponding to θ′′, one gets a block-diagonal matrix(

Σ
′
diag + V ar(θ

′
|θM ) 0

0 Σ
′′
diag + V ar(θ

′′
)

)
,

the inverse of which is also block-diagonal: (
Σ

′
diag + V ar(θ

′
|θM )

)−1

0

0
(

Σ
′′
diag + V ar(θ

′′
)
)−1

 .
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Take an “original” market as defined in Section 2 of the main body of the paper, and consider

an “alternative” market, in which the demand from liquidity traders, u(alt), is equal to the demand

from liquidity traders in the original market multiplied by a constant factor ρ > 0: u(alt) = ρu. For

notational convenience, we append the superscript (alt) to variables associated with the alternative

market, while variables associated with the original markets have the same notation as before.

The total demand observed by the market maker in the equilibrium of the alternative market

is thus

D(alt) =
∑
i

d
(alt)
i + u(alt),

where d
(alt)
i = (α(alt))T θi is the demand of trader i. The price in the equilibrium of this alternative

market is then a random variable given by

p(alt) = β
(alt)
D

(∑
i

(α(alt))T θi + ρu

)
+ (β

(alt)
M )T θM .

Proposition OA.4 In the unique linear equilibrium of the alternative market,

β
(alt)
D =

βD
ρ
,

β
(alt)
M = βM ,

α(alt) = ρα.

In particular, equilibrium price does not depend on the scale of liquidity demand:

p(alt) = p.

Proof. The proof follows directly from the equilibrium characterization of Section 3.2. First,

note that Σ
(alt)
θθ = Cov(θ, θ) = Σθθ and similarly Σ

(alt)
diag = Σdiag, Σ

(alt)
MM = Cov(θM , θM ) = ΣMM ,

Σ
(alt)
θv = Cov(θ, v) = Σθv, and Σ

(alt)
Mv = Cov(θM , v) = ΣMv.

Next, note that Σ
(alt)
θu = Cov(θ, ρu) = ρΣθu, Σ

(alt)
Mu = Cov(θM , ρu) = ρΣMu, σ

(alt)
uu = V ar(ρu) =

ρ2σuu, and σ
(alt)
vu = Cov(v, ρu) = ρσvu.

This immediately yields A
(alt)
v = Av, A

(alt)
u = ρA

(alt)
u , a(alt) = a, b(alt) = ρb, and c(alt) = ρ2c.

Hence, γ(alt) = ργ, β
(alt)
D = βD/ρ, β

(alt)
M = βM , and α(alt) = ρα, and therefore p(alt) = p.

8 Proof of Theorem 2 (General Case)

The proof of Theorem 2 in the main body of the paper applies to the special case in which the

covariance matrix of random vector (θ; θM ;u) is full rank. In this section, we prove Theorem 2 for

the general case, imposing only Assumptions 1 and 2L: Cov(v, θ|θM ) 6= 0 and V ar(u|θ, θM ) > 0.

Before proceeding to the proof, we first prove the following lemma.

24



Lemma OA.2 Let φ be a random vector normally distributed with mean zero and variance-covariance

matrix Σ. Let α be a vector of the same dimensionality, and let {αk} be a sequence of vectors such

that

lim
k→∞

(αk)
T φ̃ = αT φ̃

for every realization φ̃ of random vector φ except possibly on a set of probability zero. Then the

limit also holds in the L2 sense, that is,

lim
k→∞

E
[(

(αk)
Tφ− αTφ

)2]
= 0.

Proof. Let N be the rank of matrix V ar(φ), and take an orthogonal matrix Φ such that

ΦTV ar(φ)Φ =

(
M 0

0 0

)
,

where M is a symmetric positive definite matrix of size N (if matrix V ar(φ) is itself positive definite,

and thus full rank, then we can simply take Φ to be the identity matrix and thus M = V ar(φ).)

Let ψ = ΦTφ (and thus, since Φ is orthogonal, φ = Φψ). If, for almost all realizations φ̃ of φ,

we have (αk)
T φ̃ → αT φ̃, then for almost all realizations ψ̃ of ψ, we also have (αk)

TΦψ̃ → αTΦψ̃,

which can be rewritten as

(ΦTαk)
T ψ̃ → (ΦTα)T ψ̃. (OA.12)

Since ψ is distributed normally with mean zero and variance

(
M 0

0 0

)
, where M is a positive

definite matrix of rank N , the fact that the convergence in equation (OA.12) holds for almost all

realizations ψ̃ of random vector ψ implies that the first N components of vector ΦTαk converge to

the first N components of vector ΦTα. Then,

E
[(

(αk)
Tφ− αTφ

)2]
= E

[(
(αk)

TΦψ − αTΦψ
)2]

= E
[
(ΦTαk − ΦTα)TψψT (ΦTαk − ΦTα)

]
= (ΦTαk − ΦTα)TV ar(ψ)(ΦTαk − ΦTα)

= (ΦTαk − ΦTα)T

(
M 0

0 0

)
(ΦTαk − ΦTα).

Since the first N components of ΦTαk converge to the first N components of ΦTα, we get that the

first N components of (ΦTαk−ΦTα) converge to 0, which in turn implies by the last equation that

E
[(

(αk)
Tφ− αTφ

)2]→ 0.

We are now ready to prove Theorem 2. The proof proceeds in five steps.
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Step 1. Step 1 is identical to Step 1 in the proof of the special case in Appendix B in the main

body of the paper, and is therefore omitted. The remaining steps are different from those in the

proof of the special case.

Step 2. Let us now consider the entire sequence of markets, and restore superscript (m) for the

variables. We introduce, for each market m, a random vector θ̂(m), which is independent of the other

random variables of the model, and is distributed normally with mean 0 and variance-covariance

matrix Σ̂
(m)
diag.

Applying the usual projection formulas for jointly normal random variables, we note that the

expressions for Λ̂(m), Â
(m)
u , and Â

(m)
v that were obtained in Step 1 can be written as

Λ̂(m) = V ar(θ + ξ(m) + θ̂(m)|θM ),

Â(m)
u = [V ar(θ + ξ(m) + θ̂(m)|θM )]−1Cov(θ + ξ(m) + θ̂(m), u|θM ),

Â(m)
v = [V ar(θ + ξ(m) + θ̂(m)|θM )]−1Cov(θ + ξ(m) + θ̂(m), v|θM ).

Note that, unlike the special case considered in Appendix B, the limit of Λ̂(m) is not guaranteed

to be invertible, and so we cannot directly consider the limits of Â
(m)
u and Â

(m)
v . Instead, we (in

essence) will perform a change of basis, and will work in the new system of coordinates.

Formally, let Φ be an orthogonal matrix such that

ΦTV ar(θ|θM )Φ =

(
M 0

0 0

)
,

where M is a symmetric positive definite matrix whose size is the rank of V ar(θ|θM ) (and, if

V ar(θ|θM ) is itself positive definite, we can simply take Φ to be the identity matrix and M =

V ar(θ|θM )). Note that Assumption 1 (Cov(v, θ|θM ) 6= 0) implies that V ar(θ|θM ) 6= 0, and thus

the size of matrix M is greater than zero.

Let (θ′; θ′′) be the random vector defined as ΦT θ, where the dimensionality of θ′ is equal to the

rank of M . (Note that V ar(θ′|θM ) = M and that V ar(θ′′|θM ) = 0.) In a similar fashion, we let

((θ̂(m))′; (θ̂(m))′′) = ΦT θ̂(m) and ((ξ(m))′; (ξ(m))′′) = ΦT ξ(m).

We will first show that the following limits hold.

V ar((ξ(m))′ + (θ̂(m))′|(ξ(m))′′ + (θ̂(m))′′) → 0,

V ar((Â(m)
v )T (ξ(m) + θ̂(m))) → 0,

V ar((Â(m)
u )T (ξ(m) + θ̂(m))) → 0,

V ar((Â(m)
v )T θ̂(m)) → 0,

V ar((Â(m)
u )T θ̂(m)) → 0,

V ar((Â(m)
v )T ξ(m)) → 0,

V ar((Â(m)
u )T ξ(m)) → 0,
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Cov((Â(m)
v )T θ̂(m), θ̂(m)) → 0,

Cov((Â(m)
u )T θ̂(m), θ̂(m)) → 0,

Cov((Â(m)
v )T θ̂(m), ξ(m)) → 0,

Cov((Â(m)
u )T θ̂(m), ξ(m)) → 0,

Cov((Â(m)
v )T θ̂(m), (Â(m)

u )T θ̂(m)) → 0.

Step 2(a). We show that V ar((ξ(m))′ + (θ̂(m))′|(ξ(m))′′ + (θ̂(m))′′)→ 0. Note that

V ar((ξ(m))′i + (θ̂(m))′i|(ξ(m))′′ + (θ̂(m))′′) ≤ V ar((ξ(m))′i + (θ̂(m))′i),

where (ξ(m))′i+(θ̂(m))′i denotes the i-th element of random vector (ξ(m))′+(θ̂(m))′. We then observe

that, using the variance-covariance inequality,

∣∣Cov((ξ(m))′i + (θ̂(m))′i, (ξ
(m))′j + (θ̂(m))′j |(ξ(m))′′ + (θ̂(m))′′)

∣∣2
≤ V ar((ξ(m))′i + (θ̂(m))′i|(ξ(m))′′ + (θ̂(m))′′)

× V ar((ξ(m))′j + (θ̂(m))′j |(ξ(m))′′ + (θ̂(m))′′)

≤ V ar((ξ(m))′i + (θ̂(m))′i)V ar((ξ
(m))′j + (θ̂(m))′j).

Since V ar((ξ(m))′i + (θ̂(m))′i) = V ar((ξ(m))′i) + V ar((θ̂(m))′i) → 0 for all i, we conclude that every

element of matrix V ar((ξ(m))′ + (θ̂(m))′|(ξ(m))′′ + (θ̂(m))′′) converges to 0.

Step 2(b). We now show that V ar((Â
(m)
v )T (ξ(m)+θ̂(m))→ 0 and V ar((Â

(m)
u )T (ξ(m)+θ̂(m)))→ 0.

We focus on the first limit; the second one can be obtained via a similar derivation. For any vector

θ̃(m) of the same dimensionality as θ̂(m) and ξ(m), we can rewrite (Â
(m)
v )T θ̃(m) as

E[v|θ + ξ(m) + θ̂(m) = θ̃(m), θM = 0]

= E[v|ΦT θ + ΦT ξ(m) + ΦT θ̂(m) = ΦT θ̃(m), θM = 0]

= E[v|θ′ + (ξ(m))′ + (θ̂(m))′ = (θ̃(m))′, (ξ(m))′′ + (θ̂(m))′′ = (θ̃(m))′′, θM = 0],

where we define ((θ̃(m))′; (θ̃(m))′′) = ΦT θ̃(m) and the second equality makes use of the fact that,

conditionally on θM = 0, it is the case that θ′′ = 0 almost surely.

Let χ(m) = (ξ(m))′ + (θ̂(m))′ − E[(ξ(m))′ + (θ̂(m))′|(ξ(m))′′ + (θ̂(m))′′], i.e., χ(m) is the residual of

the projection of (ξ(m))′ + (θ̂(m))′ on (ξ(m))′′ + (θ̂(m))′′. As (ξ(m)) and (θ̂(m)) are independent of v,

(ξ(m))′′ + (θ̂(m))′′ is also independent of v, and noting that (ξ(m))′′ + (θ̂(m))′′ is independent of θ′,

χ(m), and θM , we get

(Â(m)
v )T θ̃(m) = E[v|θ′ + (ξ(m))′ + (θ̂(m))′ = (θ̃(m))′, (ξ(m))′′ + (θ̂(m))′′ = (θ̃(m))′′, θM = 0]

= E[v|θ′ + χ(m) = f(θ̃(m)), θM = 0],
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where we define f(θ̃(m)) = (θ̃(m))′ − E[(ξ(m))′ + (θ̂(m))′|(ξ(m))′′ + (θ̂(m))′′ = (θ̃(m))′′]. Next,

E[v|θ′ + (χ(m))′ = f(θ̃(m)), θM = 0] = Cov(v, θ′ + χ(m)|θM )[V ar(θ′ + χ(m)|θM )]−1f(θ̃(m)).

Hence, since f(ξ(m) + θ̂(m)) = χ(m),

V ar((Â(m)
v )T (ξ(m) + θ̂(m))) = V ar(Cov(v, θ′ + χ(m)|θM )[V ar(θ′ + χ(m)|θM )]−1χ(m)).

Therefore, to show that V ar((Â
(m)
v )T (ξ(m) + θ̂(m))→ 0, it is enough to show that

V ar(χ(m))→ 0,

and that

Cov(v, θ′ + χ(m)|θM )[V ar(θ′ + χ(m)|θM )]−1 → Cov(v, θ′|θM )[V ar(θ′|θM )]−1.

To get the first limit, note that V ar(χ(m)) = V ar((ξ(m))′ + (θ̂(m))′|(ξ(m))′′ + (θ̂(m))′′), which

was shown to converge to 0 in Step 2(a). The second limit follows directly from the first one, along

with the observation that V ar(θ′|θM ) is, by construction, positive definite, and thus invertible.

Thus, V ar((Â
(m)
v )T (ξ(m) + θ̂(m)))→ 0.

Step 2(c). Since ξ(m) and θ̂(m) are independent, we have that V ar((Â
(m)
v )T (ξ(m) + θ̂(m))) =

V ar((Â
(m)
v )T ξ(m)) + V ar((Â

(m)
v )T θ̂(m)), and as the left-hand side converges to 0 as m → ∞, and

the two terms of the right-hand side are nonnegative, we get that V ar((Â
(m)
v )T θ̂(m)) → 0 and

V ar((Â
(m)
v )T ξ(m)) → 0. We also get V ar((Â

(m)
u )T θ̂(m)) → 0 and V ar((Â

(m)
u )T ξ(m)) → 0 by the

same argument.

Step 2(d). We now show that Cov((Â
(m)
v )T θ̂(m), θ̂(m)) → 0; the proof of the convergence for

Cov((Â
(m)
u )T θ̂(m), θ̂(m)) → 0, Cov((Â

(m)
v )T θ̂(m), ξ(m)) → 0, and Cov((Â

(m)
u )T θ̂(m), ξ(m)) → 0 is

again completely analogous.

By the covariance inequality,

|Cov((Â(m)
v )T θ̂(m), θ̂

(m)
i )|2 ≤ V ar((Â(m)

v )T θ̂(m))V ar(θ̂
(m)
i )

and we know from Step 2(c) that V ar((Â
(m)
v )T θ̂(m))→ 0. Besides we also have that V ar(θ̂

(m)
i )→ 0.

Hence Cov((Â
(m)
v )T θ̂(m), θ̂

(m)
i )→ 0 for all i, and thus Cov((Â

(m)
v )T θ̂(m), θ̂(m))→ 0.

Step 2(e). Again, by the covariance inequality,

|Cov((Â(m)
v )T θ̂(m), (Â(m)

u )T θ̂(m))|2 ≤ V ar((Â(m)
v )T θ̂(m))V ar((Â(m)

u )T θ̂(m)),
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and we have just shown that both variances converge to 0. Thus,

Cov((Â(m)
v )T θ̂(m), (Â(m)

u )T θ̂(m))→ 0.

Step 3. In this step we will show the following:

a(m) → 0,

b(m) → −Cov(u, v|θ, θM ),

c(m) → V ar(u|θ, θM ).

By the projection formulas for jointly normal random variables, we observe that the expressions

for the coefficients a(m), b(m) and c(m), obtained in Step 1, can be written as follows:

a(m) = V ar((Â(m)
v )T θ̂(m)),

b(m) = 2Cov((Â(m)
v )T θ̂(m), (Â(m)

u )T θ̂(m))− Cov(u, v|θ + ξ(m) + θ̂(m), θM ),

c(m) = V ar((Â(m)
u )T (θ + ξ(m))− u|θM ).

Step 3(a). We showed in Step 2 that V ar((Â
(m)
v )T θ̂(m))→ 0. It implies a(m) → 0.

Step 3(b). Let us show that b(m) → −Cov(u, v|θ, θM ).

In Step 2, we showed that

Cov((Â(m)
v )T θ̂(m), (Â(m)

u )T θ̂(m))→ 0

so it remains to show Cov(u, v|θ + ξ(m) + θ̂(m), θM )→ Cov(u, v|θ, θM ).

Using the projection formula, we write Cov(u, v|θ + ξ(m) + θ̂(m), θM ) as

Cov(u, v|θM )− Cov(u, θ|θM )[V ar(θ + ξ(m) + θ̂(m)|θM )]−1Cov(θ, v|θM ),

where we used the fact that ξ(m) + θ̂(m) is independent of v and θ. Then, using the orthogonality

of Φ, i.e., that ΦT = Φ−1, we observe that

Cov(u, θ|θM )[V ar(θ + ξ(m) + θ̂(m)|θM )]−1Cov(θ, v|θM )

= Cov(u,ΦT θ|θM )[V ar(ΦT θ + ΦT ξ(m) + ΦT θ̂(m)|θM )]−1Cov(ΦT θ, v|θM ).

Also observe that Cov(u,ΦT θ|θM ) = (Cov(u, θ′|θM ), 0) and Cov(ΦT θ, v|θM ) = (Cov(θ′, v|θM ); 0).

From the block matrix inversion formula,9 and using the facts that V ar(θ′′|θM ) = 0 and that

random vectors θ and ξ(m) + θ̂(m) are independent, we get

Cov(u,ΦT θ|θM )[V ar(ΦT θ + ΦT ξ(m) + ΦT θ̂(m)|θM )]−1Cov(ΦT θ, v|θM )

9See, for example, http://en.wikipedia.org/wiki/Block_matrix_pseudoinverse.
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= Cov(u, θ′|θM )

× [V ar(θ′ + (ξ(m))′ + (θ̂(m))′|θM )

− Cov((ξ(m))′ + (θ̂(m))′, (ξ(m))′′ + (θ̂(m))′′)V ar((ξ(m))′′ + (θ̂(m))′′)Cov((ξ(m))′′ + (θ̂(m))′′, (ξ(m))′ + (θ̂(m))′)]−1

× Cov(θ′, v|θM )

= Cov(u, θ′|θM )[V ar(θ′ + (ξ(m))′ + (θ̂(m))′|θM , (ξ(m))′′ + (θ̂(m))′′)]−1Cov(θ′, v|θM ).

Now, as

V ar(θ′+(ξ(m))′+(θ̂(m))′|θM , (ξ(m))′′+(θ̂(m))′′) = V ar(θ′|θM )+V ar((ξ(m))′+(θ̂(m))′|(ξ(m))′′+(θ̂(m))′′),

and since we have already proven in Step 2 that V ar((ξ(m))′ + (θ̂(m))′|(ξ(m))′′ + (θ̂(m))′′) → 0, we

have

Cov(u,ΦT θ|θM )[V ar(ΦT θ + ΦT ξ(m) + ΦT θ̂(m)|θM )]−1Cov(ΦT θ, v|θM )→

Cov(u, θ′)[V ar(θ′|θM )]−1Cov(θ′, v|θM ).

Thus

Cov(u, v|θM )− Cov(u, θ|θM )[V ar(θ + ξ(m) + θ̂(m)|θM )]−1Cov(θ, v|θM )→

Cov(u, v|θM )− Cov(u, θ′|θM )[V ar(θ′|θM )]−1Cov(θ′, v|θM ),

and the latter expression is equal to Cov(u, v|θ′, θM ), which in turn is equal to Cov(u, v|θ, θM ).

Thus, b(m) → −Cov(u, v|θ, θM ).

Step 3(c). Finally, let us show that c(m) → V ar(u|θ, θM ). We have already shown that

c(m) = V ar(Cov(u, θ + ξ(m) + θ̂(m)|θM )[V ar(θ + ξ(m) + θ̂(m)|θM )]−1(θ + ξ(m))− u|θM )

= V ar(Cov(u, θ + ξ(m) + θ̂(m)|θM )[V ar(θ + ξ(m) + θ̂(m)|θM )]−1θ − u|θM ) + V ar((Â(m)
u )T ξ(m)).

We have shown in Step 2 that V ar((Â
(m)
u )T ξ(m))→ 0. Now, again using ΦT = Φ−1, we note that

Cov(u, θ + ξ(m) + θ̂(m)|θM )[V ar(θ + ξ(m) + θ̂(m)|θM )]−1θ

= Cov(u,ΦT θ|θM )[V ar(ΦT θ + ΦT ξ(m) + ΦT θ̂(m)|θM )]−1ΦT θ.

Next, using the same block matrix inversion formula as in Step 3(b), and the same facts about

vectors θ′′, θ, and θ̂(m), we get

V ar(Cov(u, θ + ξ(m) + θ̂(m)|θM )[V ar(θ + ξ(m) + θ̂(m)|θM )]−1θ − u|θM ) =

V ar(Cov(u,ΦT θ|θM )[V ar(ΦT θ + ΦT ξ(m) + ΦT θ̂(m)|θM )]−1ΦT θ − u|θM )→

V ar(Cov(u, θ′|θM )[V ar(θ′|θM )]−1θ′ − u|θM ).
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Finally,

V ar(Cov(u, θ′|θM )[V ar(θ′|θM )]−1θ′ − u|θM ) = V ar(u|θ′, θM )

= V ar(u|θ, θM ),

and thus

c(m) → V ar(u|θ, θM ).

For the last observation in Step 3, note that by Assumption 2L, V ar(u|θ, θM ) > 0, and thus the

results above on the limits of a(m), b(m), and c(m) imply that β
(m)
D also converges to a finite value.

Step 4. By equilibrium condition (i), β
(m)
D and β

(m)
M are coefficients of the projection of v on the

total demand (α(m))T (θ + ξ(m)) + u and the market maker’s signal θM :

v = β
(m)
D ((α(m))T (θ + ξ(m)) + u) + (β

(m)
M )T θM + εv,(α(m))T (θ+ξ(m))+u,θM

, (OA.13)

where εv,(α(m))T (θ+ξ(m))+u,θM
is independent of (α(m))T (θ + ξ(m)) + u and θM .

Also, condition (ii), expressed via equation (17) in the proof of the special case of Theorem 2

in Appendix B of the main body of the paper,10 can also be rewritten as a projection equation, of

v − β(m)
D u− (β

(m)
M )T θM (corresponding to the right-hand side of equation (17)) on θ + ξ(m) + θ̂(m)

(corresponding to the left-hand side of equation (17)):

v − β(m)
D u− (β

(m)
M )T θM = β

(m)
D (α(m))T (θ + ξ(m) + θ̂(m)) + ε

v,θ+ξ(m)+θ̂(m) . (OA.14)

We will now show that θM is independent of ε
v,θ+ξ(m)+θ̂(m) . Because of joint normality, it is

enough to show that Cov(ε
v,θ+ξ(m)+θ̂(m) , θM ) = 0. From equation (OA.14), and using the indepen-

dence of θ̂(m) and θM ,

Cov(ε
v,θ+ξ(m)+θ̂(m) , θM ) =

Cov(v, θM )− Cov(β
(m)
D (α(m))T θ, θM )− Cov(β

(m)
D u, θM )− Cov((β

(m)
M )T θM , θM ).

From equation (OA.13), we get that

Cov(v, θM ) = Cov(β
(m)
D (α(m))T θ, θM ) + Cov(β

(m)
D u, θM ) + Cov((β

(m)
M )T θM , θM ),

hence establishing the equality Cov(ε
v,θ+ξ(m)+θ̂(m) , θM ) = 0.

In the remainder of the proof, p(m) is the random variable that corresponds to the equilibrium

price of the asset in market m, i.e.,

p(m) = β
(m)
D (α(m))T (θ + ξ(m)) + β

(m)
D u+ (β

(m)
M )T θM . (OA.15)

10It is straightforward to check that the derivation of equation (17) does not depend on the additional assumptions
imposed in the special case, and remains valid in the general case that we consider in the current proof.
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Step 5. As m→∞, the behavior of the market depends on the sign of Cov(u, v|θ, θM ).

Step 5(a). Let us first consider the case in which Cov(u, v|θ, θM ) > 0.

In this case, β
(m)
D → Cov(u, v|θ, θM )/V ar(u|θ, θM ), which is immediately seen from the limits

of the coefficients of the quadratic equation on β
(m)
D in Step 3. We will show that p(m) L2

−→
E[v|θM , θ, u], i.e., p(m) converges to E[v|θM , θ, u] in the L2 sense.

We observe that

E[v|θM , θ, u]− p(m) = E[v − p(m)|θM , θ, u]

and, from equations (OA.14) and (OA.15),

v − p(m) = β
(m)
D (α(m))T θ̂(m) + ε

v,θ+ξ(m)+θ̂(m) ,

and since θ̂(m) is independent of θ, θM , u, we get that

E[v|θM , θ, u]− p(m) = E[ε
v,θ+ξ(m)+θ̂(m) |θM , θ, u] = E[ε

v,θ+ξ(m)+θ̂(m) |θ, u],

where the second equality comes from the fact that ε
v,θ+ξ(m)+θ̂(m) and θM are independent.

By Lemma OA.2, to prove

E
[
E[ε

v,θ+ξ(m)+θ̂(m) |θ, u]2
]
→ 0,

it is enough to show that, for almost every realization (θ̃; ũ) of random vector (θ;u),

E[ε
v,θ+ξ(m)+θ̂(m) |θ = θ̃, u = ũ]→ 0.

To show the latter convergence, it is in turn sufficient to show two convergences:

Cov(ε
v,θ+ξ(m)+θ̂(m) , θ)→ 0

and Cov(ε
v,θ+ξ(m)+θ̂(m) , u)→ 0.

We first show that Cov(ε
v,θ+ξ(m)+θ̂(m) , θ)→ 0. From equation (OA.14), and using the fact that

θ̂(m) and θ are independent, we have

Cov(ε
v,θ+ξ(m)+θ̂(m) , θ)

= Cov(v, θ)− Cov(β
(m)
D u, θ)− Cov((β

(m)
M )T θM , θ)− Cov(β

(m)
D (α(m))T θ, θ).

Recalling that ε
v,θ+ξ(m)+θ̂(m) and θ + ξ(m) + θ̂(m) are independent and that θ̂(m) and ξ(m) are

independent of each other and of v, u, θ, and θM , we also have

Cov(v, θ) = Cov(v, θ + ξ(m) + θ̂(m))
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= Cov(β
(m)
D (α(m))T θ, θ) + Cov(β

(m)
D (α(m))T θ̂(m), θ̂(m))

+ Cov(β
(m)
D (α(m))T ξ(m), ξ(m)) + Cov(β

(m)
D u, θ) + Cov((β

(m)
M )T θM , θ).

Thus,

Cov(ε
v,θ+ξ(m)+θ̂(m) , θ) = Cov(β

(m)
D (α(m))T θ̂(m), θ̂(m)) + Cov(β

(m)
D (α(m))T ξ(m), ξ(m)).

Now, since β
(m)
D converges to a finite value, by Step 2 we have

Cov(β
(m)
D (α(m))T θ̂(m), θ̂(m)) = Cov((Â(m)

v )T θ̂(m), θ̂(m))− β(m)
D Cov((Â(m)

u )T θ̂(m), θ̂(m))→ 0.

Similarly, we have

Cov(β
(m)
D (α(m))T ξ(m), ξ(m)) = Cov((Â(m)

v )T ξ(m), ξ(m))− β(m)
D Cov((Â(m)

u )T ξ(m), ξ(m))→ 0.

And thus we get that

Cov(ε
v,θ+ξ(m)+θ̂(m) , θ)→ 0.

Observe that to establish this convergence, we did not rely on the fact that β
(m)
D converges to a

positive value; we only used the fact that it converges to a finite value. We will use this observation

in Step 5(b).

Next, we show that Cov(ε
v,θ+ξ(m)+θ̂(m) , u)→ 0. From equation (OA.13), we get that

Cov(v, (α(m))T θ) + Cov(v, u)

= Cov(β
(m)
D (α(m))T θ, (α(m))T θ) + Cov(β

(m)
D (α(m))T ξ(m), (α(m))T ξ(m)) + Cov(β

(m)
D (α(m))T θ, u)

+ Cov(β
(m)
D u, (α(m))T θ) + Cov(β

(m)
D u, u) + Cov((β

(m)
M )T θM , (α

(m))T θ) + Cov((β
(m)
M )T θM , u).

From equation (OA.14), it follows that

Cov(v, (α(m))T θ)− Cov(β
(m)
D (α(m))T θ, (α(m))T θ)

− Cov(β
(m)
D (α(m))T ξ(m), (α(m))T ξ(m))− Cov(β

(m)
D u, (α(m))T θ)

− Cov((β
(m)
M )T θM , (α

(m))T θ) = Cov(β
(m)
D (α(m))T θ̂(m), (α(m))T θ̂(m)),

where the last term can be rewritten as

Cov(β
(m)
D (α(m))T θ̂(m), (α(m))T θ̂(m))

= (β
(m)
D )−1V ar((Â(m)

v )T θ̂(m))− 2Cov((Â(m)
v )T θ̂(m), (Â(m)

u )T θ̂(m)) + β
(m)
D V ar((Â(m)

u )T θ̂(m)).

As β
(m)
D converges to a positive value, the limits established in Step 2 imply that all the terms on
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the right-hand side of the last equation converge to zero, and thus

Cov(β
(m)
D (α(m))T θ̂(m), (α(m))T θ̂(m))→ 0,

and so

Cov(v, (α(m))T θ)− Cov(β
(m)
D (α(m))T θ, (α(m))T θ)

− Cov(β
(m)
D (α(m))T ξ(m), (α(m))T ξ(m))− Cov(β

(m)
D u, (α(m))T θ)

− Cov((β
(m)
M )T θM , (α

(m))T θ)→ 0.

Thus

Cov(v, u)− Cov(β
(m)
D (α(m))T θ, u)− Cov(β

(m)
D u, u)− Cov((β

(m)
M )T θM , u)→ 0

and so Cov(ε
v,θ+ξ(m)+θ̂(m) , u)→ 0.

Step 5(b). We now examine the remaining case: Cov(u, v|θ, θM ) ≤ 0. In this case, β
(m)
D → 0,

which again follows from the limits of the coefficients a(m), b(m), and c(m) in Step 3. We will show

that p(m) L2

−→ E[v|θ, θM ].

Expressing v using equation (OA.14), and taking expectations on both sides conditional on θ

and θM , we have

E[v|θ, θM ] = β
(m)
D E[u|θ, θM ] +

[
(β

(m)
M )T θM + β

(m)
D (α(m))T (θ + ξ(m))

]
+ E[ε

v,θ+ξ(m)+θ̂(m) |θ, θM ]

= β
(m)
D E[u|θ, θM ] +

[
p(m) − β(m)

D u
]

+ E[ε
v,θ+ξ(m)+θ̂(m) |θ, θM ],

and so we have

p(m) − E[v|θ, θM ] = β
(m)
D (u− E[u|θ, θM ])− E[ε

v,θ+ξ(m)+θ̂(m) |θ, θM ].

As β
(m)
D → 0, the first term on the right-hand side, β

(m)
D (u − E[u|θ, θM ]), converges to 0 (in

L2 sense). Also, in Step 4 we showed that ε
v,θ+ξ(m)+θ̂(m) is independent of θM , and therefore

E[ε
v,θ+ξ(m)+θ̂(m) |θ, θM ] = E[ε

v,θ+ξ(m)+θ̂(m) |θ]. In Step 5(a), we showed that Cov(ε
v,θ+ξ(m)+θ̂(m) , θ)→

0, implying that E[ε
v,θ+ξ(m)+θ̂(m) |θ = θ̃, θM = θ̃M ] converges to 0 for almost every realization

(θ̃; θ̃M ) of random vector (θ; θM ). Therefore, by Lemma OA.2, E[ε
v,θ+ξ(m)+θ̂(m) |θ, θM ]

L2

−→ 0. Thus,

p(m) L2

−→ E[v|θ, θM ].

9 Proof of Theorem 3 (Special Case)

In this Section, we prove Theorem 3 in the special case in which the covariance matrix of random

vector (θS ; θL; θM ;u) is full rank. In Section 10 below, we provide the full proof of Theorem 3,

without making this simplifying assumption.
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Step 1. In addition to the markets indexed m = 1, 2, . . . , we consider the alternative market

which includes s groups of traders i = 1, . . . , s. The size of group i is `i. Each trader j of group

i receives signal θi. In this alternative market, the market maker receives signal (θL; θM ). We use

superscript (m) when we refer to the variables of the market m, and we use superscript (alt) when

we refer to the variables in the alternative market. By Theorem 1 a unique linear equilibrium exists

for each market m and for the alternative market. Recall that `
(m)
i is constant in m for i ≤ s.

For i = s + 1, . . . , n, we define ξ
(m)
i = (

∑
j ξi,j)/`

(m)
i and ξ

(m)
L = (ξ

(m)
s+1; . . . ; ξ

(m)
n ). For i ≤ s we

let by convention Σξ
i = 0, ξ

(m)
i = 0, and ξ

(m)
S = (ξ

(m)
1 ; . . . ; ξ

(m)
s ). Let ξ(m) = (ξ

(m)
S ; ξ

(m)
L ).

Also, as before, we define

Σ̂
(alt)
diag =


1
`1

Σ11 0 0

0
. . . 0

0 0 1
`s

Σss


and

Σ̂
(m)
diag =


1

`
(m)
1

(Σ11 + Σξ
1) 0 0

0
. . . 0

0 0 1

`
(m)
n

(Σnn + Σξ
n)

 .

We also define

Σξ,(m) =


1

`
(m)
1

Σξ
1 0 0

0
. . . 0

0 0 1

`
(m)
n

Σξ
n

 .

Note that Σξ,(m) is the variance-covariance matrix of ξ(m). Also note that as m →∞, Σξ,(m) → 0

and Σ̂
(m)
diag → Σ̂

(∞)
diag, where we define

Σ̂
(∞)
diag =

(
Σ̂

(alt)
diag 0

0 0

)
.

We could proceed by showing various convergence results directly, by matrix manipulation,

as in the proof of the special case of Theorem 2 in Appendix B in the main body of the paper.

However, it turns out that the proof becomes simpler and more intuitive if instead we follow the

methodology of the proof of the general case of Theorem 2, introduce auxiliary random variables,

and interpret various matrices in the proof as covariance matrices of various combinations of these

auxiliary random variables and the random variables in the model.

Specifically, for each market m, we introduce a random vector θ̂(m), which is independent of

the other random variables in the model, and is distributed normally with mean 0 and covariance

matrix Σ̂
(m)
diag. We also introduce a random vector θ̂S , which is independent of the other random

variables in the model, and is distributed normally with mean 0 and covariance matrix Σ̂
(alt)
diag .
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Finally, we introduce a random vector θ̂(∞), which is defined as θ̂(∞) = (θ̂S ; 0), and is therefore

distributed normally with mean 0 and covariance matrix Σ̂
(∞)
diag.

First let us focus on the linear equilibrium in market m. We have

Λ̂(m) = Σ̂
(m)
diag + Σξ,(m) + V ar(θ|θM ) = V ar(θ + ξ(m) + θ̂(m)|θM ),

Â(m)
u = (Λ̂(m))−1Cov(θ, u|θM ),

Â(m)
v = (Λ̂(m))−1Cov(θ, v|θM ).

Finding the linear equilibrium is equivalent to solving the quadratic equation

c(m)(β
(m)
D )2 + b(m)β

(m)
D + a(m) = 0,

where

a(m) = −(Â(m)
v )T Σ̂

(m)
diagÂ

(m)
v ,

b(m) = (Â(m)
v )T

(
2Σ̂

(m)
diag + Λ̂(m)

)
Â(m)
u − Cov(u, v|θM ),

c(m) = V ar((Â(m)
u )T (θ + ξ(m))− u|θM ).

Similarly, there exists a unique linear equilibrium of the alternative market. Let

Λ̂(alt) = Σ̂
(alt)
diag + V ar(θS |θM , θL) = V ar(θS + θ̂S |θM , θL),

Â(alt)
u = (Λ̂(alt))−1Cov(θS , u|θM , θL),

Â(alt)
v = (Λ̂(alt))−1Cov(θS , v|θM , θL).

Finding the linear equilibrium is equivalent to solving the quadratic equation

c(alt)(β
(alt)
D )2 + b(alt)β

(alt)
D + a(alt) = 0,

where

a(alt) = −(Â(alt)
v )T Σ̂

(alt)
diag Â

(alt)
v ,

b(alt) = (Â(alt)
v )T

(
2Σ̂

(alt)
diag + Λ̂(alt)

)
Â(alt)
u − Cov(u, v|θM , θL),

c(alt) = V ar((Â(alt)
u )T θS − u|θM , θL).

The equilibrium price in market m is

p(m) = (β
(m)
M )T θM + β

(m)
D

(
(α(m))T θ(m) + u

)
= (β

(m)
M )T θM + β

(m)
D

(
(α

(m)
S )T θS + (α

(m)
L )T (θ

(m)
L + ξ

(m)
L ) + u

)
,
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where we “decompose” the vector α(m) as α(m) =
(
α

(m)
S ;α

(m)
L

)
.

The equilibrium price in the alternative market is

p(alt) = (β
(alt)
M )T θ

(alt)
M + β

(alt)
D

(
(α(alt))T θS + u

)
= (β

(alt)
M,M )T θM + (β

(alt)
M,L)T θL + β

(alt)
D

(
(α(alt))T θS + u

)
,

where θ
(alt)
M = (θM ; θL) and β

(alt)
M is “decomposed” as β

(alt)
M = (β

(alt)
M,M ;β

(alt)
M,L).

We will show in Step 2 that β
(m)
D → β

(alt)
D , and then in Step 3 we will show that β

(m)
M → β

(alt)
M,M ,

β
(m)
D α

(m)
L → β

(alt)
M,L , and β

(m)
D α

(m)
S → β

(alt)
D α(alt). By the same argument as in Step 3 of the proof

of the special case of Theorem 2, showing these four convergence results is sufficient to prove the

statement of Theorem 3.

Step 2. First, we show that the coefficients of the quadratic equation that β
(m)
D satisfies converge

to those of the quadratic equation that β
(alt)
D satisfies. As the coefficient on (β

(alt)
D )2 in the latter

equation is positive (as shown in Step 5 on the proof of Theorem 1 in Appendix A in the main

body of the paper), this convergence implies that β
(m)
D converges to β

(alt)
D .

Step 2(a). We first show that a(m) → a(alt). We have

Σ̂
(m)
diag → Σ̂

(∞)
diag := V ar((θ̂S ; 0)),

thus

Λ̂(m) → Λ̂(∞) := V ar((θS + θ̂S ; θL)|θM ),

and, as Λ̂(∞) is positive definite (which follows from Assumption 2H),

Â(m)
v → Â(∞)

v := (Λ̂(∞))−1Cov(θ, v|θM )

= V ar((θS + θ̂S ; θL)|θM )−1Cov((θS + θ̂S ; θL), v|θM ).

This identity implies that for any (fixed) vectors θ̃S (of the same dimension as random vector θS)

and θ̃L (of the same dimension as random vector θL), we have

(Â(∞)
v )T (θ̃S ; θ̃L) = E[v|θM = 0, θS + θ̂S = θ̃S , θL = θ̃L]. (OA.16)

Now, note that

a(m) → a(∞) := −(Â(∞)
v )T Σ̂

(∞)
diagÂ

(∞)
v

= −(Â(∞)
v )TV ar((θ̂S ; 0))Â(∞)

v

= −V ar
(

(Â(∞)
v )T (θ̂S ; 0)

)
.
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Likewise, for any (fixed) vector θ̃S (of the same dimension as θS), we have

(Â(alt)
v )T θ̃S = E[v|θM = 0, θS + θ̂S = θ̃S , θL = 0]. (OA.17)

Also,

a(alt) = −(Â(alt)
v )T Σ̂

(alt)
diag Â

(alt)
v

= −(Â(alt)
v )TV ar(θ̂S)Â(alt)

v

= −V ar
(

(Â(alt)
v )T θ̂S

)
.

Equations (OA.16) and (OA.17) imply that for every realization θ̃S of random vector θ̂S ,

(Â(∞)
v )T (θ̃S ; 0) = E[v|θM = 0, θS + θ̂S = θ̃S , θL = 0]

= (Â(alt)
v )T θ̃S ,

and thus

V ar
(

(Â(∞)
v )T (θ̂S ; 0)

)
= V ar

(
(Â(alt)

v )T θ̂S

)
and so a(m) → a(∞) = a(alt).

Step 2(b). Next, we show that b(m) → b(alt). In the limit,

b(m) → b(∞) := (Â(∞)
v )T

(
2Σ̂

(∞)
diag + Λ̂(∞)

)
Â(∞)
u − Cov(u, v|θM ),

where

Â(∞)
u := lim

m→∞
Â(m)
u = (Λ̂(∞))−1Cov(θ, u|θM ).

Similarly to equations (OA.16) and (OA.17) above, for any fixed vectors θ̃S and θ̃L, we have

(Â(∞)
u )T (θ̃S ; θ̃L) = E[u|θM = 0, θS + θ̂S = θ̃S , θL = θ̃L]; (OA.18)

(Â(alt)
u )T θ̃S = E[u|θM = 0, θS + θ̂S = θ̃S , θL = 0]. (OA.19)

Note that

(Â(∞)
v )T Σ̂

(∞)
diagÂ

(∞)
u = (Â(∞)

v )TV ar((θ̂S ; 0))Â(∞)
u

= Cov
(

(Â(∞)
v )T (θ̂S ; 0), (Â(∞)

u )T (θ̂S ; 0)
)

and

(Â(alt)
v )T Σ̂

(alt)
diag Â

(alt)
u = (Â(alt)

v )TV ar(θ̂S)Â(alt)
u

= Cov
(

(Â(alt)
v )T θ̂S , (Â

(alt)
u )T θ̂S

)
.
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By equations (OA.16)–(OA.19), for any realization θ̃S of random vector θ̂S ,

(Â(∞)
v )T (θ̃S ; 0) = (Â(alt)

v )T θ̃S and

(Â(∞)
u )T (θ̃S ; 0) = (Â(alt)

u )T θ̃S ,

and so

(Â(∞)
v )T Σ̂

(∞)
diagÂ

(∞)
u = (Â(alt)

v )T Σ̂
(alt)
diag Â

(alt)
u .

Next, note that

(Â(∞)
v )T Λ̂(∞)Â(∞)

u = Cov(v, (θS + θ̂S ; θL)|θM )[V ar((θS + θ̂S ; θL)|θM )]−1Cov((θS + θ̂S ; θL), u|θM )

and so

(Â(∞)
v )T Λ̂(∞)Â(∞)

u − Cov(u, v|θM ) = −Cov(u, v|θM , θL, θS + θ̂S).

Similarly,

(Â(alt)
v )T Λ̂(alt)Â(alt)

u = Cov(v, θS + θ̂S |θM , θL)[V ar(θS + θ̂S |θM , θL)]−1Cov(θS + θ̂S , u|θM , θL),

and so

(Â(alt)
v )T Λ̂(alt)Â(alt)

u − Cov(u, v|θM , θL) = −Cov(u, v|θM , θL, θS + θ̂S).

Therefore, we have

b(m) → b(∞) = 2(Â(∞)
v )T Σ̂

(∞)
diagÂ

(∞)
u +

(
(Â(∞)

v )T Λ̂(∞)Â(∞)
u − Cov(u, v|θM )

)
= 2(Â(alt)

v )T Σ̂
(alt)
diag Â

(alt)
u − Cov(u, v|θM , θL, θS + θ̂S)

= b(alt).

Step 2(c). Finally, we show that c(m) → c(alt). We have

c(m) → c(∞) := V ar((Â(∞)
u )T θ − u|θM )

and

c(alt) = V ar((Â(alt)
u )T θS − u|θM , θL).

Let random variable χ be the residual from the projection of u on (θS + θ̂S ; θL; θM ). By

construction, χ is orthogonal to θL and θM and thus, by the properties of the normal distribution,

is independent of those two random variables. Recall that θ̂S was also chosen to be independent of

θL and θM .
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Next,

V ar((Â(∞)
u )T θ − u|θM ) = V ar

(
u− (Â(∞)

u )T (θS + θ̂S ; θL) + (Â(∞)
u )T (θ̂S ; 0)|θM

)
= V ar

(
χ+ (Â(∞)

u )T (θ̂S ; 0)|θM
)

and

V ar((Â(alt)
u )T θS − u|θM , θL) = V ar

(
u− (Â(alt)

u )T (θS + θ̂S) + (Â(alt)
u )T θ̂S |θM , θL

)
= V ar

(
χ+ (Â(alt)

u )T θ̂S |θM , θL
)
.

Since χ and θ̂S are both independent of θM and θL, we have

V ar
(
χ+ (Â(∞)

u )T (θ̂S ; 0)|θM
)

= V ar
(
χ+ (Â(∞)

u )T (θ̂S ; 0)
)

and

V ar
(
χ+ (Â(alt)

u )T θ̂S |θM , θL
)

= V ar
(
χ+ (Â(alt)

u )T θ̂S

)
.

Take any realizations χ̃ and θ̃S of random variables χ and θ̂S . From equations (OA.18) and

(OA.19) in Step 2(b), we have

χ̃+ (Â(∞)
u )T (θ̃S ; 0) = χ̃+ E[u|θM = 0, θS + θ̂S = θ̃S , θL = 0]

= χ̃+ (Â(alt)
u )T θ̃S ,

and so

V ar
(
χ+ (Â(∞)

u )T (θ̂S ; 0)
)

= V ar
(
χ+ (Â(alt)

u )T θ̂S

)
and thus

c(m) → c(∞) = c(alt).

Step 3. We now show that β
(m)
M → β

(alt)
M,M , β

(m)
D α

(m)
L → β

(alt)
M,L , and β

(m)
D α

(m)
S → β

(alt)
D α(alt). The

arguments below rely on Assumption 2H, which implies that various conditional expectations that

we compute below are guaranteed to be well defined. They also rely on the result we showed in the

previous step, β
(∞)
D = β

(alt)
D .

First, note that for any θ̃S , (α
(m)
S )T θ̃S = (α(m))T (θ̃S ; 0), and so

lim
m→∞

β
(m)
D (α(m))T (θ̃S ; 0) = β

(∞)
D

(
(Â(∞)

v )T /β
(∞)
D − (Â(∞)

u )T
)

(θ̃S ; 0)

= E[v − β(∞)
D u|θM = 0, θS + θ̂S = θ̃S , θL = 0]

= β
(alt)
D (α

(alt)
S )T θ̃S .
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Thus, β
(m)
D α

(m)
S → β

(alt)
D α(alt).

Next, we have

β
(m)
M → β

(∞)
M := Σ−1

MM

(
ΣMv − ΣT

θMA
(∞)
v

)
− β(∞)

D Σ−1
MM

(
ΣMu − ΣT

θMA
(∞)
u

)
,

and so for any θ̃M , we have

(β
(∞)
M )T θ̃M = E[v − β(∞)

D u|θM = θ̃M , θS + θ̂S = 0, θL = 0].

Also, similarly to the above expression for β
(∞)
D α

(∞)
S , for any θ̃L, we have

β
(∞)
D (α

(∞)
L )T θ̃L = E[v − β(∞)

D u|θM = 0, θS + θ̂S = 0, θL = θ̃L].

Thus,

(β
(∞)
M ;β

(∞)
D α

(∞)
L )T (θ̃M ; θ̃L) = E[v − β(∞)

D u|θM = θ̃M , θS + θ̂S = 0, θL = θ̃L].

Analogously to the expression for (β
(∞)
M )T θ̃M , we also have

(β
(alt)
M )T (θ̃M ; θ̃L) = E[v − β(alt)

D u|θS + θ̂S = 0, (θM ; θL) = (θ̃M ; θ̃L)]

= (β
(∞)
M ;β

(∞)
D α

(∞)
L )T (θ̃M ; θ̃L).

Thus, β
(m)
M → β

(alt)
M,M and β

(m)
D α

(m)
L → β

(alt)
M,L , and combining all the convergence results above and

using the same argument as in Step 3 of the proof of the special case of Theorem 2 in Appendix B

in the main body of the paper, we conclude the proof of Theorem 3.

10 Proof of Theorem 3 (General Case)

The proof in Section 9 applies to the special case in which the covariance matrix of random vector

(θS ; θL; θM ;u) is full rank. In this section, we prove Theorem 3 for the general case, imposing only

Assumptions 1H and 2H: Cov(v, θS |θL, θM ) 6= 0 and V ar(u|θL, θM ) > 0.

In addition to the markets indexed m = 1, 2, . . . , we consider the alternative market which

includes s groups of traders i = 1, . . . , s. The size of group i is `i. Each trader j of group i receives

the same signal θi. In this alternative market, the market maker receives signal (θL; θM ). We use

superscript (m) when we refer to the variables of the market m, and we use superscript (alt) when

we refer to the variables in the alternative market. By Theorem 1 a unique linear equilibrium exists

for each market m and for the alternative market.

For i = s+ 1, . . . , n, we define ξ
(m)
i = (

∑
j ξi,j)/`

(m)
i and ξ

(m)
L = (ξ

(m)
s+1; . . . ; ξ

(m)
n ). For i ≤ s, we

let Σξ
i = 0, ξ

(m)
i = 0, and ξ

(m)
S = (ξ

(m)
1 ; . . . ; ξ

(m)
s ). Let ξ(m) = (ξ

(m)
1 ; . . . ; ξ

(m)
n ).
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We also define

Σ̂
(alt)
diag =


1
`1

Σ11 0 0

0
. . . 0

0 0 1
`s

Σss


and

Σ̂
(m)
diag =


1

`
(m)
1

(Σ11 + Σξ
1) 0 0

0
. . . 0

0 0 1

`
(m)
n

(Σnn + Σξ
n)


where `

(m)
i = `i if i ≤ s. Note that

Σ̂
(m)
diag → Σ̂

(∞)
diag :=

(
Σ̂

(alt)
diag 0

0 0

)
.

Similarly, we define

Σξ,(m) =


1

`
(m)
1

Σξ
1 0 0

0
. . . 0

0 0 1

`
(m)
n

Σξ
n

 .

Note that Σξ,(m) is the variance-covariance matrix of the random vector ξ(m), and that

lim
m→∞

Σξ,(m) = 0.

We follow the methodology of the proof of the general case of Theorem 2 and the special case of

Theorem 3. We introduce auxiliary random variables, and interpret various matrices in the proof

as covariance matrices of combinations of these auxiliary random variables and the original random

variables in the model.

Specifically, for each market m, we introduce a random vector θ̂(m), which is independent of

the other random variables in the model, and is distributed normally with mean 0 and covariance

matrix Σ̂
(m)
diag. We also introduce a random vector θ̂S , which is independent of the other random

variables in the model, and is distributed normally with mean 0 and covariance matrix Σ̂
(alt)
diag .

Finally, we introduce a random vector θ̂(∞) = (θ̂S ; 0), which is distributed normally with mean 0

and covariance matrix Σ̂
(∞)
diag.

The remainder of the proof assumes that V ar(θL|θM , θS + θ̂S) 6= 0. This assumption is without

loss of generality: if the signals of the large groups are such that V ar(θL|θM , θS + θ̂S) = 0, we can

append a randomly and independently distributed signal to the common signals component of one

large group, so that the conditional variance becomes nonzero. By Proposition OA.3 in Section 6,

traders never trade based on this additional, uninformative signal, and the equilibrium outcome is

not impacted by its presence.

Finally, we define the following matrices and vectors, similarly as in the proof of Theorem 1.
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For market m, we let

Λ̂(m) = V ar(θ + ξ(m) + θ̂(m)|θM ),

Â(m)
u = (Λ̂(m))−1Cov(θ, u|θM ),

Â(m)
v = (Λ̂(m))−1Cov(θ, v|θM ).

For the alternative market, we let

Λ̂(alt) = V ar(θS + θ̂S |θM , θL),

Â(alt)
u = (Λ̂(alt))−1Cov(θS , u|θM , θL),

Â(alt)
v = (Λ̂(alt))−1Cov(θS , v|θM , θL).

We remark that, for a vector θ̃ of the same dimensionality as θ,

(Â(m)
v )T θ̃ = E[v | θM = 0, θS + θ̂S = θ̃S , θL + ξ

(m)
L + θ̂

(m)
L = θ̃L]

where we decompose θ̃ as (θ̃S ; θ̃L). We get an analogous expression for Â
(m)
u . Similarly, we have

(Â(alt)
v )T θ̃S = E[v | θM = 0, θS + θ̂S = θ̃S ]

and we get an analogous expression for Â
(alt)
u .

10.1 Change of Basis

As in the proof of the general case of Theorem 2 in Section 8, to handle the problem of covariance

matrices that are not positive definite, we perform a change of basis.

Let Φ be an orthogonal matrix such that

ΦTV ar(θL|θM , θS + θ̂S)Φ =

(
M 0

0 0

)
,

where M is a symmetric positive definite matrix whose size is the rank of V ar(θL|θM , θS + θ̂S).

Since, by assumption, V ar(θL|θM , θS + θ̂S) 6= 0, the size of matrix M is greater than zero.

Let (θ′L; θ′′L) be the random vector defined as ΦT θL, where the dimensionality of θ′L is equal

to the rank of M . Note that V ar(θ′L|θM , θS + θ̂S) = M and that θ′′L = 0. In a similar fashion,

we let ((θ̂
(m)
L )′; (θ̂

(m)
L )′′) = ΦT θ̂

(m)
L and ((ξ

(m)
L )′; (ξ

(m)
L )′′) = ΦT ξ

(m)
L . For a vector θ̃L of the same

dimensionality as θL, define (θ̃′L; θ̃′′L) = ΦT θ̃L.

We let χ
(m)
L be the residual of the projection of (ξ

(m)
L )′ + (θ̂

(m)
L )′ on (ξ

(m)
L )′′ + (θ̂

(m)
L )′′, i.e.,

χ
(m)
L = (ξ

(m)
L )′ + (θ̂

(m)
L )′ − E[(ξ

(m)
L )′ + (θ̂

(m)
L )′|(ξ(m)

L )′′ + (θ̂
(m)
L )′′]. We have already shown in the

general proof of Theorem 2 in Section 8 that V ar(χ
(m)
L )→ 0.
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For a vector θ̃L of the same dimensionality as θL, we define

f(θ̃L) = (θ̃L)′ − E[(ξ
(m)
L )′ + (θ̂

(m)
L )′|(ξ(m)

L )′′ + (θ̂
(m)
L )′′ = (θ̃L)′′].

In addition, let

B̂(m)
v = [V ar((θS + θ̂S ; θ′L + χ

(m)
L )|θM )]−1Cov((θS ; θ′L), v | θM )

and note that since (θS+θ̂S ; θ′L; θM ) is not degenerate, and that V ar(χ
(m)
L )→ 0 and V ar(θ̂

(m)
L )→ 0,

we have the following limit:

lim
m→∞

B̂(m)
v = B̂(∞)

v := [V ar((θS + θ̂S ; θ′L)|θM ]−1Cov((θS ; θ′L), v|θM ).

Similarly, define

B̂(m)
u = [V ar((θS + θ̂S ; θ′L + χ

(m)
L )|θM )]−1Cov((θS ; θ′L), u | θM )

and note that we have the following limit:

lim
m→∞

B̂(m)
u = B̂(∞)

u := [V ar((θS + θ̂S ; θ′L)|θM )]−1Cov((θS ; θ′L), u | θM ).

Finally, let

Ĉv = [V ar((θS + θ̂S ; θL)|θM )]−1Cov((θS ; θL), v | θM )

and

Ĉu = [V ar((θS + θ̂S ; θL)|θM )]−1Cov((θS ; θL), u | θM ),

where the matrix inverse in the last two equations denotes a Moore-Penrose pseudoinverse, because

the random vector (θL; θM ) may be degenerate. Note that, for θ̃L a realization of θL, and any

vector θ̃S of the same dimension as θS , we still have the equality

(Ĉv)
T (θ̃S ; θ̃L) = E[v|θM = 0, θS + θ̂S = θ̃S , θL = θ̃L],

and similarly

(Ĉu)T (θ̃S ; θ̃L) = E[u|θM = 0, θS + θ̂S = θ̃S , θL = θ̃L].

10.2 Auxiliary Results

Before proceeding to the main body of the proof, we first state and prove several auxiliary results.

Auxiliary Result (a). First, we prove that

lim
m→∞

Cov(u, v|θM , θS + θ̂S , θL + θ̂
(m)
L + ξ

(m)
L ) = Cov(u, v|θM , θS + θ̂S , θL).
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We have, noting that θ′′L = 0,

Cov(u, v|θM , θS + θ̂S , θL + θ̂
(m)
L + ξ

(m)
L )

= Cov(u, v|θM , θS + θ̂S , θ
′
L + (θ̂

(m)
L )′ + (ξ

(m)
L )′, (θ̂

(m)
L )′′ + (ξ

(m)
L )′′)

= Cov(u, v|θM , θS + θ̂S , θ
′
L + χ

(m)
L ).

The variance-covariance matrix of (θM , θS + θ̂S , θ
′
L) is positive definite. As the variance of χ

(m)
L

converges to zero, we get

lim
m→∞

Cov(u, v|θM , θS + θ̂S , θ
′
L + χ

(m)
L ) = Cov(u, v|θM , θS + θ̂S , θ

′
L)

= Cov(u, v|θM , θS + θ̂S , θL),

which yields the desired result.

Auxiliary Result (b). Next we prove that, for every vector θ̃S of the same dimensionality as

θS , we have the limit

lim
m→∞

E[v|θM = 0, θS + θ̂S = θ̃S , θL + θ̂
(m)
L + ξ

(m)
L = 0] = E[v|θM = 0, θS + θ̂S = θ̃S , θL = 0].

Indeed,

E
[
v|θM = 0, θS + θ̂S = θ̃S , θL + θ̂

(m)
L + ξ

(m)
L = 0

]
= E

[
v|θM = 0, θS + θ̂S = θ̃S , θ

′
L + (θ̂

(m)
L )′ + (ξ

(m)
L )′ = 0, (θ̂

(m)
L )′′ + (ξ

(m)
L )′′ = 0

]
= E

[
v|θM = 0, θS + θ̂S = θ̃S , θ

′
L + χ

(m)
L = 0, (θ̂

(m)
L )′′ + (ξ

(m)
L )′′ = 0

]
= E

[
v|θM = 0, θS + θ̂S = θ̃S , θ

′
L + χ

(m)
L = 0

]
.

Observing that the variance-covariance matrix of (θM , θS + θ̂S , θ
′
L) is positive definite and the

variance of χ
(m)
L converges to zero yields the desired result.

Auxiliary Result (c). We get, in the same way, that for every vector θ̃S of the same dimension-

ality as θS , we have the limit

lim
m→∞

E[u|θM = 0, θS + θ̂S = θ̃S , θL + ξ
(m)
L + θ̂

(m)
L = 0] = E[u|θM = 0, θS + θ̂S = θ̃S , θL = 0]

and that for every vector θ̃M of the same dimensionality as θM , we have the limit

lim
m→∞

E[v|θM = θ̃M , θS + θ̂S = 0, θL + ξ
(m)
L + θ̂

(m)
L = 0] = E[v|θM = θ̃M , θS + θ̂S = 0, θL = 0],

lim
m→∞

E[u|θM = θ̃M , θS + θ̂S = 0, θL + ξ
(m)
L + θ̂

(m)
L = 0] = E[u|θM = θ̃M , θS + θ̂S = 0, θL = 0].
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Auxiliary Result (d). Next, we prove that

lim
m→∞

V ar((Âmv )T (θ̂S ; θ̂
(m)
L )) = V ar((Âaltv )T θ̂S).

We have, using the independence of the two random vectors θ̂S and θ̂
(m)
L , the equality

V ar((Âmv )T (θ̂S ; θ̂
(m)
L )) = V ar((Âmv )T (θ̂S ; 0)) + V ar((Âmv )T (0; θ̂

(m)
L )).

By Auxiliary Result (b),

lim
m→∞

V ar((Âmv )T (θ̂S ; 0)) = V ar((Âaltv )T θ̂S),

so it remains to prove that

lim
m→∞

V ar((Âmv )T (0; θ̂
(m)
L )) = 0. (OA.20)

We have
V ar((Âmv )T (0; θ̂

(m)
L )) ≤ V ar((Âmv )T (0; θ̂

(m)
L )) + V ar((Âmv )T (0; ξ

(m)
L ))

= V ar((Âmv )T (0; θ̂
(m)
L + ξ

(m)
L )).

We have, for any vector θ̃L of the same dimension as θL,

E[v|θM = 0, θS + θ̂S = 0, θL + ξ
(m)
L + θ̂

(m)
L = θ̃L]

= E[v|θM = 0, θS + θ̂S = 0, θ′L + (ξ
(m)
L )′ + (θ̂

(m)
L )′ = (θ̃L)′, (ξ

(m)
L )′′ + (θ̂

(m)
L )′′ = (θ̃L)′′]

= E[v|θM = 0, θS + θ̂S = 0, θ′L + χ
(m)
L = f(θ̃L), (ξ

(m)
L )′′ + (θ̂

(m)
L )′′ = (θ̃L)′′]

= E[v|θM = 0, θS + θ̂S = 0, θ′L + χ
(m)
L = f(θ̃L)].

Thus,

V ar((Â(m)
v )T (0; θ̂

(m)
L + ξ

(m)
L )) = V ar((B̂(m)

v )T (0; f(θ̂
(m)
L + ξ

(m)
L )))

= V ar((B̂(m)
v )T (0; f(χ

(m)
L )))

→ 0

since B̂
(m)
v → B̂

(∞)
v and V ar(χ

(m)
L )→ 0. Limit (OA.20) follows.

Auxiliary Result (e). Next, we show that

(Â(m)
v )T Σ̂

(m)
diagÂ

(m)
u → (Â(alt)

v )T Σ̂
(alt)
diag Â

(alt)
u . (OA.21)

We note that

(Â(m)
v )T Σ̂

(m)
diagÂ

(m)
u = Cov((Â(m)

v )T (θ̂S ; θ̂
(m)
L ), (Â(m)

u )T (θ̂S ; θ̂
(m)
L ))
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= Cov((B̂(m)
v )T (θ̂S ; f(θ̂

(m)
L )), (B̂(m)

u )T (θ̂S ; f(θ̂
(m)
L ))),

→ Cov((B̂(∞)
v )T (θ̂S ; 0), (B̂(∞)

u )T (θ̂S ; 0)),

using that, by linearity of f and independence of θ̂
(m)
L and ξ

(m)
L , V ar(f(θ̂

(m)
L )) ≤ V ar(f(θ̂

(m)
L +

ξ
(m)
L )) = V ar(χmL )→ 0, and also, B̂

(m)
u → B̂

(∞)
u and B̂

(m)
v → B̂

(∞)
v .

In addition, for any vector θ̃S of the same dimensionality as θS , we can write

(B̂(∞)
v )T (θ̃S ; 0) = E[v|θM = 0, θL = 0, θS + θ̂S = θ̃S ] = (Â(alt)

v )T θ̃S

and

(B̂(∞)
u )T (θ̃S ; 0) = E[u|θM = 0, θL = 0, θS + θ̂S = θ̃S ] = (Â(alt)

u )T θ̃S .

Thus,

Cov((B̂(∞)
v )T (θ̂S ; 0), (B̂(∞)

u )T (θ̂S ; 0)) = Cov((Â(alt)
v )T θ̂S , (Â

(∞)
u )T θ̂S)) = (Â(alt)

v )T Σ̂
(alt)
diag Â

(alt)
u ,

which allows to get Limit (OA.21).

Auxiliary Result (f). Next, we show that

lim
m→∞

V ar((Â(m)
u )T (θS ; θL + ξ

(m)
L )− u|θM ) = V ar((Ĉu)T (θS ; θL)− u|θM ). (OA.22)

Since ξ
(m)
L is independent of (θS ; θL), u, and θM , we have

V ar((Â(m)
u )T (θS ; θL + ξ

(m)
L )− u|θM ) = V ar((Â(m)

u )T (θS ; θL)− u|θM ) + V ar((Â(m)
u )T (0; ξ

(m)
L )).

In Auxiliary Result (d) we have shown in Limit (OA.20) that V ar((Â
(m)
v )T (0; ξ

(m)
L )) → 0, and

similarly we have V ar((Â
(m)
u )T (0; ξ

(m)
L ))→ 0. It remains to show that

lim
m→∞

V ar((Â(m)
u )T (θS ; θL)− u|θM ) = V ar((Ĉu)T (θS ; θL)− u|θM ). (OA.23)

By the same argument as in Auxiliary Result (d), for any vector θ̃S of the same dimension as θS ,

and any vector θ̃L of the same dimension as θL,

(B̂(m)
u )T (θ̃S ; θ̃L) = E[u|θM = 0, θS + θ̂S = θ̃S , θL + ξ

(m)
L + θ̂

(m)
L = θ̃L]

= E[u|θM = 0, θS + θ̂S = θ̃S , θ
′
L + χ

(m)
L = f(θ̃L)],

and since the random vector (θM , θS + θ̂S , θ
′
L) is not degenerate, and V ar(χ

(m)
L )→ 0, we have the

limit

lim
m→∞

E[u|θM = 0, θS + θ̂S = θ̃S , θ
′
L + χ

(m)
L = f(θ̃L)]
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= E[u|θM = 0, θS + θ̂S = θ̃S , θ
′
L = f(θ̃L)].

Note that, since θ′′L = 0, f(θL) = θ′L. Thus, for any realization θ̃L of θL,

E[u|θM = 0, θS + θ̂S = θ̃S , θ
′
L = f(θ̃L)]

= E[u|θM = 0, θS + θ̂S = θ̃S , θL = θ̃L] = (Ĉu)T (θ̃S ; θ̃L).

Therefore Limit (OA.23) obtains.

Auxiliary Result (g). This result is an equality. We show that

V ar((Ĉu)T (θS ; θL)− u|θM ) = V ar((Ĉu)T (θS ; 0)− u|θM , θL).

For any vectors θ̃M , θ̃S , θ̃L, let

η(θ̃M , θ̃S , θ̃L) = u− E[u|θM = θ̃M , θS + θ̂S = θ̃S , θ̃L = θ̃L].

Note that η is linear in its arguments. Also, since η(θM , θS + θ̂S , θL) is the residual of the projection

of u on (θM , θS + θ̂S , θL), it is independent of the latter random vector. Therefore,

V ar(u− (Ĉu)T (θS ; θL)|θM ) = V ar(η(θM , θS + θ̂S , θL) + (Ĉu)T (θ̂S ; 0)|θM )

= V ar(η(θM , θS + θ̂S , θL) + (Ĉu)T (θ̂S ; 0)|θM , θL)

= V ar(η(0, θS + θ̂S , 0) + (Ĉu)T (θ̂S ; 0)|θM , θL)

= V ar(u− (Ĉu)T (θS + θ̂S ; 0) + (Ĉu)T (θ̂S ; 0)|θM , θL)

= V ar(u− (Ĉu)T (θS ; 0)|θM , θL).

10.3 Main Body of the Proof

We are now ready to prove Theorem 3. The proof proceeds in three steps.

Step 1. First let us focus on the linear equilibrium in market (m). Following Theorem 1, finding

the linear equilibrium is equivalent to solving the quadratic equation

c(m)(β
(m)
D )2 + b(m)β

(m)
D + a(m) = 0,

where

a(m) = −(Â(m)
v )T Σ̂

(m)
diagÂ

(m)
v ,

b(m) = (Â(m)
v )T

(
2Σ̂

(m)
diag + Λ̂(m)

)
Â(m)
u − Cov(u, v|θM ),

c(m) = V ar((Â(m))Tu (θ + ξ(m))− u|θM ).
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Similarly, there exists a unique linear equilibrium of the alternative market, and inding the

linear equilibrium is equivalent to solving the quadratic equation

c(alt)(β
(alt)
D )2 + b(alt)β

(alt)
D + a(alt) = 0,

where

a(alt) = −(Â(alt)
v )T Σ̂

(alt)
diag Â

(alt)
v ,

b(alt) = (Â(alt)
v )T

(
2Σ̂

(alt)
diag + Λ̂(alt)

)
Â(alt)
u − Cov(u, v|θM , θL),

c(alt) = V ar((Â(alt))Tu θS − u|θM , θL).

The equilibrium price in market (m) is

p(m) = (β
(m)
M )T θM + β

(m)
D

(
(α(m))T θ(m) + u

)
= (β

(m)
M )T θM + β

(m)
D

(
(α

(m)
S )T θS + (α

(m)
L )T (θ

(m)
L + ξ

(m)
L ) + u

)
,

where we “decompose” the vector of coefficients α(m) as α(m) =
(
α

(m)
S ;α

(m)
L

)
.

The equilibrium price in the alternative market is

p(alt) = (β
(alt)
M )T θ

(alt)
M + β

(alt)
D

(
(α(alt))T θS + u

)
= (β

(alt)
M,M )T θM + (β

(alt)
M,L)T θL + β

(alt)
D

(
(α(alt))T θS + u

)
,

where θ
(alt)
M = (θM ; θL) and β

(alt)
M is “decomposed” as β

(alt)
M = (β

(alt)
M,M ;β

(alt)
M,L).

We will show in Step 2 that β
(m)
D → β

(alt)
D , and then in Step 3 we will show that β

(m)
M → β

(alt)
M,M ,

β
(m)
D α

(m)
L → β

(alt)
M,L , and β

(m)
D α

(m)
S → β

(alt)
D α(alt). By the same argument as in Step 3 of the proof

of the special case in Section 9, showing these four convergence results is sufficient to prove the

statement of the general case of Theorem 3.

Step 2. First, we show that the coefficients of the quadratic equation that β
(m)
D satisfies converge

to those of the quadratic equation that β
(alt)
D satisfies. As the coefficient on (β

(alt)
D )2 in the latter

equation is positive (as shown in Step 5 on the proof of Theorem 1 in Appendix A of the main

body of the paper), this convergence implies that β
(m)
D converges to β

(alt)
D .

Step 2(a). We first show that a(m) → a(alt), which is a direct consequence of Auxiliary Result

(d) when observing that

a(m) = −(Â(m)
v )T Σ̂

(m)
diagÂ

(m)
v = −V ar((Â(m)

v )T (θ̂S ; θ̂
(m)
L ))
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and

a(alt) = −(Â(alt)
v )T Σ̂

(alt)
diag Â

(alt)
v = −V ar((Â(alt)

v )T θ̂S).

Step 2(b). Next, we show that b(m) → b(alt). We have

b(m) = (Â(m)
v )T

(
2Σ̂

(m)
diag + Λ̂(m)

)
Â(m)
u − Cov(u, v|θM )

= 2(Â(m)
v )T Σ̂

(m)
diagÂ

(m)
u + (Â(m)

v )T Λ̂(m)Â(m)
u − Cov(u, v|θM )

= 2(Â(m)
v )T Σ̂

(m)
diagÂ

(m)
u

+ Cov((Â(m)
v )T (θ + ξ(m) + θ̂(m)), (Â(m)

u )T (θ + ξ(m) + θ̂(m)))− Cov(u, v|θM )

= 2(Â(m)
v )T Σ̂

(m)
diagÂ

(m)
u − Cov(u, v|θM , θS + θ̂S , θL + θ̂

(m)
L + ξ

(m)
L ).

Similarly, we have

b(alt) = 2(Â(alt)
v )T Σ̂

(alt)
diag Â

(alt)
u − Cov(u, v|θM , θS + θ̂S , θL).

That b(m) → b(alt), is implied by

(Â(m)
v )T Σ̂

(m)
diagÂ

(m)
u → (Â(alt)

v )T Σ̂
(alt)
diag Â

(alt)
u ,

and

lim
m→∞

Cov(u, v|θM , θS + θ̂S , θL + θ̂
(m)
L + ξ

(m)
L ) = Cov(u, v|θM , θS + θ̂S , θL),

owing to Auxiliary Result (e) and (a), respectively.

Step 2(c). Finally, that c(m) → c(alt) comes from a successive application of Auxiliary Result (f)

then (g).

Step 3. Step 2 of the current proof showed that β
(m)
D → β

(alt)
D .

We now show that β
(m)
M → β

(alt)
M,M , β

(m)
D α

(m)
L → β

(alt)
M,L , and β

(m)
D α

(m)
S → β

(alt)
D α(alt).

First, for any vector θ̃S of the same dimension as θS ,

β
(m)
D (α(m))T (θ̃S ; 0) = β

(m)
D

(
(Â(m)

v )T /β
(m)
D − (Â(m)

u )T
)

(θ̃S ; 0)

= E[v − β(m)
D u|θM = 0, θS + θ̂S = θ̃S , θL + ξ

(m)
L + θ̂

(m)
L = 0],

and

β
(alt)
D (α(alt))T θ̃S = β

(alt)
D

(
(Â(alt)

v )T /β
(alt)
D − (Â(alt)

u )T
)
θ̃S

= E[v − β(alt)
D u|θM = 0, θS + θ̂S = θ̃S , θL = 0]
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We have β
(m)
D → β

(alt)
D , and by Auxiliary Result (b) and (c) respectively,

lim
m→∞

E[v|θM = 0, θS + θ̂S = θ̃S , θL + ξ
(m)
L + θ̂

(m)
L = 0] = E[v|θM = 0, θS + θ̂S = θ̃S , θL = 0]

and

lim
m→∞

E[u|θM = 0, θS + θ̂S = θ̃S , θL + ξ
(m)
L + θ̂

(m)
L = 0] = E[u|θM = 0, θS + θ̂S = θ̃S , θL = 0].

It follows that β
(m)
D α(m) → β

(alt)
D α(alt).

Next, we have the equality

β
(m)
M = Σ−1

MM

(
ΣMv − ΣT

θMA
(m)
v

)
− β(m)

D Σ−1
MM

(
ΣMu − ΣT

θMA
(m)
u

)
.

hence, for any θ̃M ,

(β
(m)
M )T θ̃M = E[v − β(m)

D u|θM = θ̃M , θS + θ̂S = 0, θL + ξ
(m)
L + θ̂

(m)
L = 0]. (OA.24)

Similarly, as β
(m)
D → β

(alt)
D , and by Auxiliary Result (b) and (c),

lim
m→∞

E[v|θM = θ̃M , θS + θ̂S = 0, θL + ξ
(m)
L + θ̂

(m)
L = 0] = E[v|θM = θ̃M , θS + θ̂S = 0, θL = 0]

and

lim
m→∞

E[u|θM = θ̃M , θS + θ̂S = 0, θL + ξ
(m)
L + θ̂

(m)
L = 0] = E[u|θM = θ̃M , θS + θ̂S = 0, θL = 0],

we get

(β
(m)
M )T θ̃M → E[v − β(alt)

D u|θM = θ̃M , θS + θ̂S = 0, θL = 0]. (OA.25)

Finally, for any θ̃L realization of θL, we have

β
(m)
D (α

(m)
L )T θ̃L → E[v − β(m)

D u|θM = 0, θS + θ̂S = 0, θL = θ̃L].

Thus,

(β
(m)
M ;β

(m)
D α

(m)
L )T (θ̃M ; θ̃L)→ E[v − β(alt)

D u|θM = θ̃M , θS + θ̂S = 0, θL = θ̃L],

and we observe that analogously to the expression for (β
(∞)
M )T θ̃M , we also have

(β
(alt)
M )T (θ̃M ; θ̃L) = E[v − β(alt)

D u|θS + θ̂S = 0, (θM ; θL) = (θ̃M ; θ̃L)].

Thus β
(m)
M → β

(alt)
M,M and β

(m)
D α

(m)
L → β

(alt)
M,L . Combining those convergence results, and applying the

same argument as in Step 3 of the proof of the special case of Theorem 3 in Section 9, we conclude

the proof.
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11 Beauty Contest Games

In this section, we show that our information aggregation results do not extend to Beauty Contest

games, even though such games share many of the features of the Kyle model and Cournot competi-

tion (normally distributed signals, linear best responses, and the uniqueness of linear equilibrium).

We first derive a closed-form linear equilibrium for a family of Beauty Contest games, and then use

that characterization to illustrate information non-aggregation in a specific example.

Our setup is in the general Beauty Contest framework of Morris and Shin (2002a), but with

some key differences. First, we consider a game with a finite number of players (instead of a

continuum), and then take a limit of such (still finite) games as the number of players becomes

large. Second, we allow for an arbitrary, potentially asymmetric variance-covariance matrix of

players’ multidimensional signals (instead of assuming that players’ signals are single-dimensional

and symmetrically distributed).11 These generalizations allow us to consider versions of Beauty

Contest games with the same types of complex information structures as in the other models of our

paper. In particular, in Example OA.12, we assume that some players are better informed than

others.

Our formal model is as follows. There are n ≥ 2 players, i = 1, . . . , n. A “state of the world”

v ∈ R is drawn at random. Each player i privately observes a signal θi ∈ Rki . Vector (θ1; . . . ; θn; v)

is drawn from the normal distribution with mean (0; . . . ; 0; v) and variance-covariance matrix Ω.

As before, without loss of generality we assume that for each i, V ar(θi) is full rank. We do not

impose any other restrictions on matrix Ω.

After observing the signal, each player i independently chooses action ai ∈ R. Subsequently,

the state of the world v is revealed, and each player i receives the payoff

πi = −w(ai − v)2 − (1− w) (ai − a−i)2 ,

where

a−i =

∑
j 6=i aj

n− 1

and w ∈ (0, 1).

As before, we focus on linear equilibria of the form ai(θi) = αTi θi + δi.

Proposition OA.5 In the Beauty Contest game, there exists a unique linear equilibrium.

Proof. Fix some player i, and suppose every player j 6= i plays according to the strategy aj(θj) =

αTj θj + δj , with αj ∈ Rkj and δj ∈ R.

The expected payoff of player i is concave in ai, and the best response is pinned down by the

11See also Section 3 of Morris and Shin (2002b) for a two-player version of the Beauty Contest setting in which the
signals have a general correlation structure, as well as the discussions in Bergemann and Morris (2013) on finite-player
analogues of continuum-player quadratic economies (of which the Beauty Contest setting is a particular case).
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first-order condition:

−2w(ai − E[v|θi])− 2(1− w)(ai − E[a−i|θi]) = 0.

Thus,

ai(θi) = wE[v|θi] + (1− w)E[a−i|θi],

with

E[a−i|θi] =

∑
j 6=i δj

n− 1
+

∑
j 6=i α

T
j E[θj |θi]

n− 1
.

Next,

E[θj |θi] = ΣjiΣ
−1
ii θi,

E[v|θi] = v + ΣviΣ
−1
ii θi,

and so

E[a−i|θi] =

∑
j 6=i δj

n− 1
+

∑
j 6=i α

T
j ΣjiΣ

−1
ii

n− 1
θi.

Therefore, we have

ai(θi) = wv + wΣviΣ
−1
ii θi + (1− w)

∑
j 6=i

δj
n− 1

+ (1− w)

∑
j 6=i

1

n− 1
αTj ΣjiΣ

−1
ii

 θi,

and so the best response of player i is linear: ai(θ) = αTi θi + δi, with

δi = wv + (1− w)
∑
j 6=i

δj
n− 1

, (OA.26)

αTi = wΣviΣ
−1
ii + (1− w)

∑
j 6=i

1

n− 1
αTj ΣjiΣ

−1
ii . (OA.27)

Therefore, all linear equilibria are characterized by vectors α1, . . . , αn and numbers δ1, . . . , δn,

such that for all i, equations (OA.26) and (OA.27) are satisfied.

We immediately get δi = v for all i. For vector α = (α1; . . . ;αn), multiplying equation (OA.27)

by Σii on the right, and combining the resulting equations for all i, we get

αTΣdiag = wΣvθ +
1− w
n− 1

αT (Σθθ − Σdiag) ,
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where Σdiag is defined as before. Solving for α, we get12

α = (n− 1)w
(

(n− w)Σdiag − (1− w)Σθθ

)−1
Σθv.

We can now present a simple example of information non-aggregation in a large Beauty Contest

game. In fact, the example has an even more striking feature: half of the agents directly observe

the state of the world, without any noise. Yet in equilibrium, there is no information aggregation,

and even the perfectly informed agents distort their actions relative to their signals.

Example OA.12 There are two groups of players, A and B. There are m players in each group.

The state of the world v is distributed normally with mean zero and variance one. Every player in

group A observes the true state of the world v. Every player j in group B observes signal θBj = v+εj,

where for each j, εj is distributed normally with mean zero and variance one, independently of v

and of the signals of other players.

By symmetry, in the unique linear equilibrium in Example OA.12, every player in group A

chooses the same action a(m) = α
(m)
A v, and every player j in group B chooses action bj = α

(m)
B (v+εj)

(since v = 0, we also have δ = 0.) From equation (OA.27) in the proof of Proposition OA.5, we

have two equations that determine α
(m)
A and α

(m)
B :

α
(m)
A = w +

1− w
2m− 1

(
(m− 1)α

(m)
A +mα

(m)
B

)
, (OA.28)

α
(m)
B =

w

2
+

1− w
2m− 1

(
m
α

(m)
A

2
+ (m− 1)

α
(m)
B

2

)
, (OA.29)

solving which gives us

α
(m)
A =

w(4m− w − 1)

3mw +m− w(w + 1)
,

α
(m)
B =

w(2m− w)

3mw +m− w(w + 1)
.

12To see that matrix (n−w)Σdiag − (1−w)Σθθ is positive definite (and thus invertible), note first that it is equal
to ((n − w) − n(1 − w))Σdiag + (1 − w)(nΣdiag − Σθθ). The first part of the sum, ((n − w) − n(1 − w))Σdiag, is
positive definite, because Σdiag is positive definite and (n − w) − n(1 − w) = (n − 1)w > 0. The second part,
(1 − w)(nΣdiag − Σθθ), is positive semi-definite. To see that, note first that (1 − w) > 0. Next, to see that matrix
(nΣdiag − Σθθ) is positive semi-definite, take any vector x of the same dimensionality as θ. We need to show that
xT (nΣdiag − Σθθ)x ≥ 0, or equivalently, that nxTΣdiagx ≥ xTΣθθx. Let ψ1 be the scalar random variable equal
to the dot product of θ1 and the vector consisting of the first k1 components of vector x, ψ2 be the scalar random
variable equal to the dot product of θ2 and the vector consisting of the next k2 components of vector x, and so
on. Note that

∑n
i=1 ψi = xT θ and that the inequality nxTΣdiagx ≥ xTΣθθx can be equivalently rewritten as

n
∑n
i=1 V ar(ψi) ≥ V ar(

∑n
i=1 ψi). The last inequality follows directly from the fact that for every i, j ≤ n, we have

Cov(ψi, ψj) ≤
√
V ar(ψi)V ar(ψj) ≤ (V ar(ψi) + V ar(ψj))/2.
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In the limit, as m→∞, we get

α
(m)
A → 4w

3w + 1
,

α
(m)
B → 2w

3w + 1
.

Thus, in the limit, even the players fully informed about the state of the world v (those in group

A) end up choosing an action different from v, and the less informed players (those in group B) end

up with actions that are, on average, even further away from v. Thus, in equilibrium, information

dispersed among the agents does not get aggregated in any meaningful way.
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